СИСТЕМНА ТРАНСФОРМАЦІЯ МАТЕМАТИЧНОЇ МОДЕЛІ ПРОЦЕСУ ЗАБУВАННЯ ЗНАНЬ, ОТРИМАНИХ СТУДЕНТОМ НА ЛЕКЦІЇ, ТА СПОСІБ ЇЇ ІДЕНТИФІКАЦІЇ
DOI:
https://doi.org/10.31649/1997-9266-2020-149-2-50-57Ключові слова:
забування знань, швидкість забування, синергетична складова пам’яті, математична модель, ітераційний спосіб ідентифікації, оптимальні оцінки параметрівАнотація
Здійснено системну трансформацію математичної моделі процесу забування знань, отриманих на лекції, «відмінниками» (з високим рівнем пам’яті) з прив’язкою до характерної для цієї категорії студентів «смуги забування»; отриманих «хорошистами» (з добрим рівнем пам’яті) з прив’язкою до характерної для цієї категорії студентів «смуги забування»; отриманих студентами з посередньою успішністю (з таким же посереднім рівнем пам’яті) з прив’язкою до характерної для цієї категорії студентів «смуги забування»; отриманих студентами з успішністю, нижчою посередньої, але здатними отримати задовільну оцінку в процесі не більше двох перескладань іспиту з прив’язкою до характерної для цієї категорії студентів «смуги забування»; та отриманих студентами з незадовільною успішністю, які повинні бути або відрахованими або залишеними на повторний курс з прив’язкою до характерної для цієї категорії студентів «смуги забування».
Системно трансформована математична модель реалізована у відносному часі та містить три основні параметри, один з яких характеризує швидкість забування студентом отриманої на лекції інформації, другий характеризує синергетичну складову, яка сповільнює процес забування, а третій характеризує ту складову отриманої інформації, яка залишається в пам’яті студента назавжди.
На основі критерію найменших квадратів розроблено спосіб ідентифікації системно трансформованої математичної моделі процесу забування знань, отриманих на лекції студентами вищеперерахованих категорій, реалізований з використанням обчислювальних структур, прив’язаних до відповідних «смуг забування», за допомогою яких реалізується ітераційний спосіб отримання оптимальних оцінок параметрів цієї моделі.
Посилання
Б. І. Мокін, і О. О. Войцеховська, «Удосконалення ймовірнісної математичної моделі процесу забування інформації, отриманої студентом на лекції,» Вісник Вінницького політехнічного інституту, № 4, с. 49-57, 2019.
Б. І. Мокін, А. В. Писклярова, і О. Б. Мокін, «Дослідження впливу синергетичної складової у математичній моделі процесу засвоєння студентом навчальної дисципліни,» Інформаційні технології та комп’ютерна інженерія, № 2, с. 9-14, 2013.
Л. М. Приснякова, Системный анализ поведения личности. Днепропетровск, Украина: издатель Овсянников Ю. С., 2007, 218 с.
Б. І. Мокін, і О. Б. Мокін, «Підвищення ступеня адекватності моделі процесу забування знань,» Вісник Вінницького політехнічного інституту, № 4, с. 116-121, 2013.
В. Н. Тутубалин, Теория вероятностей. Москва: изд-во Московского университета, 1972, 230 с.
Б. І. Мокін, В. Б. Мокін, і О. Б. Мокін, Математичні методи ідентифікації динамічних систем, навч. посіб. ВНТУ, Вінниця, Україна: ВНТУ, 2010, 260 с.
Я. З. Цыпкин, Адаптация и обучение в автоматических системах. Москва: изд-во «Наука», 1968, 400 с.
##submission.downloads##
-
PDF
Завантажень: 168
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, згодні з такими умовами:
- Автори зберігають авторське право і надають журналу право першої публікації.
- Автори можуть укладати окремі, додаткові договірні угоди з неексклюзивного поширення опублікованої журналом версії статті (наприклад, розмістити її в інститутському репозиторії або опублікувати її в книзі), з визнанням її первісної публікації в цьому журналі.
- Авторам дозволяється і рекомендується розміщувати їхню роботу в Інтернеті (наприклад, в інституційних сховищах або на їхньому сайті) до і під час процесу подачі, оскільки це сприяє продуктивним обмінам, а також швидшому і ширшому цитуванню опублікованих робіт (див. вплив відкритого доступу).