Compact Waveguide Polarizer with Three Antiphase Posts

Authors

  • A. V. Bulashenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • S. I. Пильяй National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • H. S. Kushnir National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • O. V. Ivan Kozhedub Shostka professional college Technology of Sumy State University

DOI:

https://doi.org/10.31649/1997-9266-2020-152-5-97-104

Keywords:

polarizer, post, waveguide, axial ratio, differential phase shift

Abstract

Nowadays one of the fundamental problems is the economy of digital information and frequency resources. The introduction of modern telecommunication systems and 5G networks requires the search for fundamental methods to save and reuse frequency resources. To save the frequency resource in modern communication systems the new technologies for the increase of the information capacity of communication channels are used. Antenna systems with polarization signal processing are applied for this purpose. Such systems allow transmitting signals with different types of polarization. The application of the electromagnetic waves with orthogonal polarizations improves the information characteristics of radio systems for various purposes. This makes it possible to double the information capacity of satellite communication channels. In addition, such processing is carried out in meteorological and radar systems for receiving, transmitting and processing of the information. The key devices of such systems are polarizers and orthomode transducers. The electromagnetic characteristics of these devices affect the overall system performance. The electromagnetic characteristics include phase, matching and polarization characteristics. The article presents the results of the development of an adjustable polarizer based on a square waveguide with three posts. The developed polarizer operates in the X-band from 8,0 GHz to 8,5 GHz. The mathematical model of such a device is based on the scattering and transmission wave matrix. The characteristics of the model were obtained through the elements of this matrix. To check the correctness of the developed model, a model based on the finite integration method was also created. This method is often used to simulate microwave devices. The developed polarizer based on a square waveguide with three posts allows regulating its matching and polarization characteristics by changing the length of the posts. Such devices are characterized by small transverse dimensions and stability of the polarization transformation parameters.

Author Biographies

A. V. Bulashenko, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Senior Lecturer of the Chair of Theoretical Foundations of Radio Engineering

S. I. Пильяй, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Cand. Sc. (Eng.), Associate Professor of the Chair of Theoretical Foundations of Radio Engineering

H. S. Kushnir, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Student of the Department of Radio Engineering

O. V. , Ivan Kozhedub Shostka professional college Technology of Sumy State University

Student of the Electromechanical Department

References

А. В. Булашенко, «Розподіл ресурсів для пристроїв малої потужності технології М2М у мережах 5G,» Наукові вісті КПІ, № 3, с. 7-13, 2020. https://doi.org/10.20535/kpi-sn.2020.3.203863.

A. В. Булашенко, «Оцінка зв’язності D2D комунікацій у мережах 5G,» Вісник НТУУ«КПІ». Серія Радіотехніка, Радіоапаратобудування, № 81, с. 21-29, 2020. https://doi.org/10.20535/RADAP.2020.81.21-29.

А. В. Булашенко, «Система вивантаження даних за технологією D2D у неліцензованому діапазоні частот у складі системи зв’язку 5G,» Технічна інженерія, 86 (2), с. 103-107, 2020. https://doi.org/10.26642/ten-2020-2(86)-103-107.

А. Ю. Мирончук, O. O. Шпилька, и С. Я. Жук, «Метод оценивания частотной характеристики канала а OFDM системах на основе фильтрации и экстраполяции пилот-сигналов,» Вісник НТУУ«КПІ». Серія Радіотехніка, Радіоапаратобудування, № 78, с. 36-42, 2019. https://doi.org/10.20535/RADAP.2019.78.36-42.

O. Myronchuk, O. Shpylka, and S. Zhuk, “Two-stade channel frequency response estimation in OFDM systems,” Path of science, no. 6(2), с. 1001-1007, 2020. https://doi.org/10.22178/pos.55-1.

А. В. Булашенко, і І. В. Забегалов, «Конструкція портативного цифрового мегомметра та вимірювача струму витоку,» Вісник Вінницького політехнічного інституту, № 3, с. 37-42, 2020. https://doi.org/10.31649/1997-9266-2020-150-3-37-42.

W. L. Stutzman, “Polarization in Electromagnetic Systems,” Artech House, Norwood, 352 p, 2018.

S. I. Piltyay, “Enhanced C-band coaxial orthomode tranducer,” Вісник НТУУ«КПІ». Серія Радіотехніка, Радіоапаратобудування, № 58, с. 27-34, 2014. https://doi.org/10.20535/RADAP.2014.58.27-34.

F. F. Dubrovka, and S. I. Piltyay, “Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds,” in XI Int. Conf. on Antenna Theory and Techniques, 24-27 May 2017, Kyiv, Ukraine. https://doi.org/10.1109/ICATT. 2017.7972642.

G. Mishra, S. K. Sharma, and J.-C. Chieh, “A circular polarized feed horn with inbuilt polarizer for offset reflector antenna for W-band CubeSat applications,” IEEE Transactions on Antennas and Propagattion,” vol. 59, no. 10, pp. 1904-1909, 2019. https://doi.org/10.1109/TAP.2018.2886704.

S. I. Piltyay, A. V. Bulashenko, and I. V. Demchenko, “Waveguide iris polarizers for Ku-band satellite antenna feeds,” Journal of Nano- and Electronic Physics, no. 12(5), 05024-1-5, 2020. https://doi.org/10.21272/jnep.12(5).05024.

А. В. Булашенко, С. І. Пільтяй, i І. В. Демченко, «Оптимізація поляризатора на основі квадратного хвилеводу з діафрагмами,» Наукоємні технології, № 47 (3), с. 287-297, 2020. https://doi.org/10.18372/2310-5461.47.14878.

А. В. Булашенко, С. І. Пільтяй, і Є. І. Калініченко, «Регульований поляризатор на основі квадратного хвилеводу із діафрагмами та штирями,” Технічна інженерія, 86 (2), с. 108-116, 2020. https://doi.org/10.26642/ten-2020-2(86)-108-116.

S. I. Piltyay, “High performance extended C-band 3.4–4.8 GHz dual circular polarization feed system,” in XI Int. Conf. on Antenna Theory and Techniques, 24-27 May 2017, Kyiv, Ukraine. https://doi.org/10.1109/ICATT.2017.7972644.

E. Arnieri, F. Greco, L. Boccia, and G. Amendola “A SIW-based polarization rotator with an application to linear-to-circular duak-band polarizers at K-/Ka-band,” IEEE Transactions on Antennas and Propagation, no. 68 (5), pp. 3730-3738, 2020. https://doi.org/10.1109/TAP.2020.2963901.

S. I. Piltyay, “Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides,” in 14-th International Conference on Mathematical Methods in Electromagnetic Theory, 28-30 Avg. 2012, Kyiv, Ukraine, 2012. pp. 492-495. https://doi.org/10.1109/MMET.2012.6331195.

S. I. Piltyay, and F. F. Dubrovka, “Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory,” Вісник НТУУ«КПІ». Серія Радіотехніка, Радіоапаратобудування, № 54 с. 13-23, 2013. https://doi.org/10.20535/RADAP.2013.54.13-23.

F. F. Dubrovka, and S. I. Piltyay, “Eigenmodes of coaxial quad-ridged waveguides. Theory,” Radioelectronics and Communications Systems, no. 57 (1), pp. 1-30, 2014. https://doi.org/10.3103/S0735272714010014.

F. F. Dubrovka, and S. I. Piltyay, “Eigenmodes of coaxial quad-ridged waveguides. Numerical results,” Radioelectronics and Communications Systems, no. 57 (2), pp. 59-69, 2014. https://doi.org/10.3103/S0735272714020010.

R. Lech, and J. Mazur, “Propagation in rectangular waveguides periodically loaded with cylindrical posts,” IEEE Microwave and Wireless Components Letters, no. 14 (4), pp. 177-179, 2004. https://doi.org/10.1109/LMWC.2004.827106.

Q. C. Zhu, A. G. Williamson, and M. J. Neve, “Reactance of posts in circular waveguide,” IEEE Transactions on Microwave Theory and Techniques, no. 55 (8), pp.1685-1688, 2007. https://doi.org/10.1109/TMTT.2007.901605 .

S. B. Sharma, V. K. Singh, R. Dey, and S. Chakrabarty, “Analysis of a post discontinuity in an oversized circular waveguide,” IEEE Transactions on Microwave Theory and Techniques, no. 57 (8), pp. 1989-1995, 2009. https://doi.org/10.1109/TMTT.2009.2025448.

J. Roelvink, and A.G. Williamson, “Three transverse cylindrical posts in a rectangular waveguide,” IEEE Microwave and Wireless Components Letters, no. 20 (5), pp. 253-255, 2010. https://doi.org/10.1109/LMWC.2010.2045578 .

M. Casaletti, R. Sauleau, M. Ettorre, and S. Maci, “Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures,” IEEE Transactions on Microwave Theory and Techniques, no. 60 (10), pp. 2979-2989, 2012. https://doi.org/ 10.1109/TMTT.2012.2209449.

E. Archemashvili, K. Yasumoto, V. Jandieri, J. Pistora, H. Maeda, and D. Erni, Numerical analysis of dielectric post-wall waveguides, 25-28 Feb. 2020, Bucharest, Romania. https://doi.org/10.1109/iWAT48004.2020.1570608549.

B. Deutschmann, and A. F. Jacob, “Broadband septum polarizer with triangular common port,” IEEE Transactions on Microwave Theory and Techniques, no. 68 (2), pp. 693-700, 2020. https://doi.org/10.1109/TMTT.2019.2951138.

F. F. Dubrovka, S. I. Piltyay, R. R. Dubrovka, M. M. Lytvyn, and S. M. Lytvyn, “Optimum septum polarizer design for various fractional bandwidths,” Radioelectronics and Communications Systems, vol. 63, no. 1, pp. 15-23, 2020. https://doi.org/10.3103/S0735272720010021.

A. A. Kirilenko, S. O. Steshenko, V. N. Derkach, and Y. M. Ostryzhnyi, “A tunable compact polarizer in a circular waveguide,” IEEE Transactions on Microwave Theory and Techniques, no. 67 (20), pp. 592-596, 2019. https://doi.org/10.1109/TMTT.2018.2881089.

I. Agnihotri, and S. K. Sharma, “Design of a compact 3D metal printed Ka-band waveguide polarizer,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 12, pp. 2726-2730, 2019. https://doi.org/10.1109/LAWP.2019.2950312.

C. Molero, and M. Garcia-Vigueras, “Circuit modeling of 3-D cells to design versatile full-metal polarizers,” IEEE Transactions on Microwave Theory and Techniques, no. 67 (4), pp. 1357-1369, 2019. https://doi.org/10.1109/TMTT.2019.2898828.

S. I. Piltyay, “Wideband antiphase power combiner/divider,” на 9-й Международной научно-технической конференция «Современные проблемы радиотехники и телекомуникаций», 22-26 апреля 2013, Севастополь, Украина, с. 220, 2009.

Y. Leviatan, P. G. Li, A. T. Adams, and J. Perini, “Single-post inductive obstacle in rectangular waveguide,” IEEE Transactions on Microwave Theory and Techniques, vol. 31, no. 10, pp. 806-812, 1983. https://doi.org/10.1109/TMTT.1983.1131610.

K. Sellal, L. Talbi, T. A. Denidni, and J. Lebel “Design and implementation of a substrate integrated waveguide phase shifter of a reconfigurable rectangular waveguide phase shifter with metallic posts,” IET Microwaves, Antennas & Propagation. https://doi.org/10.1049/iet-map.2008.20070135.

L. Polo-Lopez, J. L. Masa, J. L., and J. A. Ruiz-Cruz, “Design of a reconfigurable rectangular waveguide phase shifter with metallic posts,” European Microwave Conference, Oct. 2017, Nuremberg, Germany. https://doi.org/10.23919/EuMIC.2017.8230730.

Downloads

Abstract views: 357

Published

2020-11-27

How to Cite

[1]
A. V. . Bulashenko, Пильяй S. I., H. S. Kushnir, and O. V., “Compact Waveguide Polarizer with Three Antiphase Posts”, Вісник ВПІ, no. 5, pp. 97–104, Nov. 2020.

Issue

Section

Radioelectronics and radioelectronic equipment manufacturing

Metrics

Downloads

Download data is not yet available.