Compact Waveguide Polarizer with Three Antiphase Posts
DOI:
https://doi.org/10.31649/1997-9266-2020-152-5-97-104Keywords:
polarizer, post, waveguide, axial ratio, differential phase shiftAbstract
Nowadays one of the fundamental problems is the economy of digital information and frequency resources. The introduction of modern telecommunication systems and 5G networks requires the search for fundamental methods to save and reuse frequency resources. To save the frequency resource in modern communication systems the new technologies for the increase of the information capacity of communication channels are used. Antenna systems with polarization signal processing are applied for this purpose. Such systems allow transmitting signals with different types of polarization. The application of the electromagnetic waves with orthogonal polarizations improves the information characteristics of radio systems for various purposes. This makes it possible to double the information capacity of satellite communication channels. In addition, such processing is carried out in meteorological and radar systems for receiving, transmitting and processing of the information. The key devices of such systems are polarizers and orthomode transducers. The electromagnetic characteristics of these devices affect the overall system performance. The electromagnetic characteristics include phase, matching and polarization characteristics. The article presents the results of the development of an adjustable polarizer based on a square waveguide with three posts. The developed polarizer operates in the X-band from 8,0 GHz to 8,5 GHz. The mathematical model of such a device is based on the scattering and transmission wave matrix. The characteristics of the model were obtained through the elements of this matrix. To check the correctness of the developed model, a model based on the finite integration method was also created. This method is often used to simulate microwave devices. The developed polarizer based on a square waveguide with three posts allows regulating its matching and polarization characteristics by changing the length of the posts. Such devices are characterized by small transverse dimensions and stability of the polarization transformation parameters.
References
А. В. Булашенко, «Розподіл ресурсів для пристроїв малої потужності технології М2М у мережах 5G,» Наукові вісті КПІ, № 3, с. 7-13, 2020. https://doi.org/10.20535/kpi-sn.2020.3.203863.
A. В. Булашенко, «Оцінка зв’язності D2D комунікацій у мережах 5G,» Вісник НТУУ«КПІ». Серія Радіотехніка, Радіоапаратобудування, № 81, с. 21-29, 2020. https://doi.org/10.20535/RADAP.2020.81.21-29.
А. В. Булашенко, «Система вивантаження даних за технологією D2D у неліцензованому діапазоні частот у складі системи зв’язку 5G,» Технічна інженерія, 86 (2), с. 103-107, 2020. https://doi.org/10.26642/ten-2020-2(86)-103-107.
А. Ю. Мирончук, O. O. Шпилька, и С. Я. Жук, «Метод оценивания частотной характеристики канала а OFDM системах на основе фильтрации и экстраполяции пилот-сигналов,» Вісник НТУУ«КПІ». Серія Радіотехніка, Радіоапаратобудування, № 78, с. 36-42, 2019. https://doi.org/10.20535/RADAP.2019.78.36-42.
O. Myronchuk, O. Shpylka, and S. Zhuk, “Two-stade channel frequency response estimation in OFDM systems,” Path of science, no. 6(2), с. 1001-1007, 2020. https://doi.org/10.22178/pos.55-1.
А. В. Булашенко, і І. В. Забегалов, «Конструкція портативного цифрового мегомметра та вимірювача струму витоку,» Вісник Вінницького політехнічного інституту, № 3, с. 37-42, 2020. https://doi.org/10.31649/1997-9266-2020-150-3-37-42.
W. L. Stutzman, “Polarization in Electromagnetic Systems,” Artech House, Norwood, 352 p, 2018.
S. I. Piltyay, “Enhanced C-band coaxial orthomode tranducer,” Вісник НТУУ«КПІ». Серія Радіотехніка, Радіоапаратобудування, № 58, с. 27-34, 2014. https://doi.org/10.20535/RADAP.2014.58.27-34.
F. F. Dubrovka, and S. I. Piltyay, “Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds,” in XI Int. Conf. on Antenna Theory and Techniques, 24-27 May 2017, Kyiv, Ukraine. https://doi.org/10.1109/ICATT. 2017.7972642.
G. Mishra, S. K. Sharma, and J.-C. Chieh, “A circular polarized feed horn with inbuilt polarizer for offset reflector antenna for W-band CubeSat applications,” IEEE Transactions on Antennas and Propagattion,” vol. 59, no. 10, pp. 1904-1909, 2019. https://doi.org/10.1109/TAP.2018.2886704.
S. I. Piltyay, A. V. Bulashenko, and I. V. Demchenko, “Waveguide iris polarizers for Ku-band satellite antenna feeds,” Journal of Nano- and Electronic Physics, no. 12(5), 05024-1-5, 2020. https://doi.org/10.21272/jnep.12(5).05024.
А. В. Булашенко, С. І. Пільтяй, i І. В. Демченко, «Оптимізація поляризатора на основі квадратного хвилеводу з діафрагмами,» Наукоємні технології, № 47 (3), с. 287-297, 2020. https://doi.org/10.18372/2310-5461.47.14878.
А. В. Булашенко, С. І. Пільтяй, і Є. І. Калініченко, «Регульований поляризатор на основі квадратного хвилеводу із діафрагмами та штирями,” Технічна інженерія, 86 (2), с. 108-116, 2020. https://doi.org/10.26642/ten-2020-2(86)-108-116.
S. I. Piltyay, “High performance extended C-band 3.4–4.8 GHz dual circular polarization feed system,” in XI Int. Conf. on Antenna Theory and Techniques, 24-27 May 2017, Kyiv, Ukraine. https://doi.org/10.1109/ICATT.2017.7972644.
E. Arnieri, F. Greco, L. Boccia, and G. Amendola “A SIW-based polarization rotator with an application to linear-to-circular duak-band polarizers at K-/Ka-band,” IEEE Transactions on Antennas and Propagation, no. 68 (5), pp. 3730-3738, 2020. https://doi.org/10.1109/TAP.2020.2963901.
S. I. Piltyay, “Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides,” in 14-th International Conference on Mathematical Methods in Electromagnetic Theory, 28-30 Avg. 2012, Kyiv, Ukraine, 2012. pp. 492-495. https://doi.org/10.1109/MMET.2012.6331195.
S. I. Piltyay, and F. F. Dubrovka, “Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory,” Вісник НТУУ«КПІ». Серія Радіотехніка, Радіоапаратобудування, № 54 с. 13-23, 2013. https://doi.org/10.20535/RADAP.2013.54.13-23.
F. F. Dubrovka, and S. I. Piltyay, “Eigenmodes of coaxial quad-ridged waveguides. Theory,” Radioelectronics and Communications Systems, no. 57 (1), pp. 1-30, 2014. https://doi.org/10.3103/S0735272714010014.
F. F. Dubrovka, and S. I. Piltyay, “Eigenmodes of coaxial quad-ridged waveguides. Numerical results,” Radioelectronics and Communications Systems, no. 57 (2), pp. 59-69, 2014. https://doi.org/10.3103/S0735272714020010.
R. Lech, and J. Mazur, “Propagation in rectangular waveguides periodically loaded with cylindrical posts,” IEEE Microwave and Wireless Components Letters, no. 14 (4), pp. 177-179, 2004. https://doi.org/10.1109/LMWC.2004.827106.
Q. C. Zhu, A. G. Williamson, and M. J. Neve, “Reactance of posts in circular waveguide,” IEEE Transactions on Microwave Theory and Techniques, no. 55 (8), pp.1685-1688, 2007. https://doi.org/10.1109/TMTT.2007.901605 .
S. B. Sharma, V. K. Singh, R. Dey, and S. Chakrabarty, “Analysis of a post discontinuity in an oversized circular waveguide,” IEEE Transactions on Microwave Theory and Techniques, no. 57 (8), pp. 1989-1995, 2009. https://doi.org/10.1109/TMTT.2009.2025448.
J. Roelvink, and A.G. Williamson, “Three transverse cylindrical posts in a rectangular waveguide,” IEEE Microwave and Wireless Components Letters, no. 20 (5), pp. 253-255, 2010. https://doi.org/10.1109/LMWC.2010.2045578 .
M. Casaletti, R. Sauleau, M. Ettorre, and S. Maci, “Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures,” IEEE Transactions on Microwave Theory and Techniques, no. 60 (10), pp. 2979-2989, 2012. https://doi.org/ 10.1109/TMTT.2012.2209449.
E. Archemashvili, K. Yasumoto, V. Jandieri, J. Pistora, H. Maeda, and D. Erni, Numerical analysis of dielectric post-wall waveguides, 25-28 Feb. 2020, Bucharest, Romania. https://doi.org/10.1109/iWAT48004.2020.1570608549.
B. Deutschmann, and A. F. Jacob, “Broadband septum polarizer with triangular common port,” IEEE Transactions on Microwave Theory and Techniques, no. 68 (2), pp. 693-700, 2020. https://doi.org/10.1109/TMTT.2019.2951138.
F. F. Dubrovka, S. I. Piltyay, R. R. Dubrovka, M. M. Lytvyn, and S. M. Lytvyn, “Optimum septum polarizer design for various fractional bandwidths,” Radioelectronics and Communications Systems, vol. 63, no. 1, pp. 15-23, 2020. https://doi.org/10.3103/S0735272720010021.
A. A. Kirilenko, S. O. Steshenko, V. N. Derkach, and Y. M. Ostryzhnyi, “A tunable compact polarizer in a circular waveguide,” IEEE Transactions on Microwave Theory and Techniques, no. 67 (20), pp. 592-596, 2019. https://doi.org/10.1109/TMTT.2018.2881089.
I. Agnihotri, and S. K. Sharma, “Design of a compact 3D metal printed Ka-band waveguide polarizer,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 12, pp. 2726-2730, 2019. https://doi.org/10.1109/LAWP.2019.2950312.
C. Molero, and M. Garcia-Vigueras, “Circuit modeling of 3-D cells to design versatile full-metal polarizers,” IEEE Transactions on Microwave Theory and Techniques, no. 67 (4), pp. 1357-1369, 2019. https://doi.org/10.1109/TMTT.2019.2898828.
S. I. Piltyay, “Wideband antiphase power combiner/divider,” на 9-й Международной научно-технической конференция «Современные проблемы радиотехники и телекомуникаций», 22-26 апреля 2013, Севастополь, Украина, с. 220, 2009.
Y. Leviatan, P. G. Li, A. T. Adams, and J. Perini, “Single-post inductive obstacle in rectangular waveguide,” IEEE Transactions on Microwave Theory and Techniques, vol. 31, no. 10, pp. 806-812, 1983. https://doi.org/10.1109/TMTT.1983.1131610.
K. Sellal, L. Talbi, T. A. Denidni, and J. Lebel “Design and implementation of a substrate integrated waveguide phase shifter of a reconfigurable rectangular waveguide phase shifter with metallic posts,” IET Microwaves, Antennas & Propagation. https://doi.org/10.1049/iet-map.2008.20070135.
L. Polo-Lopez, J. L. Masa, J. L., and J. A. Ruiz-Cruz, “Design of a reconfigurable rectangular waveguide phase shifter with metallic posts,” European Microwave Conference, Oct. 2017, Nuremberg, Germany. https://doi.org/10.23919/EuMIC.2017.8230730.
Downloads
-
PDF (Українська)
Downloads: 100
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).