Equivalence of Models of Minimally-Phase Linear Automatic Control Systems with Pid-Regulators in a Non-Minium Phase
Keywords:
closed minimum phase linear automatic control system, high-order mathematical model, equivalenting, nonminimum phase system, mathematical model not higher than the second orderAbstract
For closed automatic control systems of linear minimum phase dynamic objects with PID controllers, the processes in which are described by mathematical models in the form of ordinary linear differential equations of high order, the article proposes a method for synthesizing mathematical models in the form of differential equations of not higher than the second order in the class of nonminimum phase ones, i.e. in the form of differential models of not higher than the second order with an argument which delays for a period of passing an input signal of the system to its output.
The article also presents a method for identifying equivalent models based on the transferring of mathematical models defined on the time domain to the frequency domain.
To derive the calculated ratios of the proposed method of identifying equivalent models, there were used the frequency characteristics.
As a criterion for optimizing parameters of the equivalent models, the criterion of least squares was used.
As the main constraint in solving the problem of finding the optimal values of parameters of the equivalent models, there was chosen an equality of the critical frequencies of the equivalent system and the initial one, because it is the value of the critical frequency that determines the ability of a linear dynamical system to retain or lose stability when it is closed by a unity negative feedback, and therefore, when equivalenting, it is necessary for the equivalent model to set the same value of the critical frequency that the real dynamic system has, for which equivalenting is used.
References
Б. И. Мокин, и И. А.Чернова «Построение математической модели минимального порядка для линейной динами-ческой системы с обратной связью,» Международный научно-технич. журнал «Проблемы управления и информации», № 2, c. 59-66, 2017.
Borys I. Mokin, and Iryna A. Chernova “Construction of a mathematical model of the minimum order for a linear dynamical system with feedback,” Journal of Automation and Information Sciences, vol. 49, Issue 3, рр. 69-77, 2017. ISSN Print: 1064-2315, ISSN Online: 2163-9337.
В. Б. Мокін, О. Б. Мокін, Б. І. Мокін, С. О. Довгополюк, та І. О. Чернова «Еквівалентування математичних моде-лей мінімально-фазових систем високого порядку в класі не мінімально-фазових,» Вісник Вінницького політехнічного інституту, № 6, с. 111-121, 2017.
Downloads
-
PDF (Українська)
Downloads: 111
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).