Analysis of Measures to Increase the Energy Efficiency of a Residential Building
DOI:
https://doi.org/10.31649/1997-9266-2024-177-6-62-67Keywords:
building energy consumption, energy efficiency class, specific thermal resistance, specific primary energy consumption, specific greenhouse gas emissionsAbstract
The current state of energy efficiency of the housing stock and the share of energy consumed by residential buildings in the overall energy balance of the country are characterized. The relevance of increasing the energy efficiency of residential buildings is shown, which will allow to significantly reduce the consumption of fossil fuels and electricity, as well as reduce the amount of harmful emissions into the environment. Ways to solve the problems of thermal modernization of buildings are analyzed, including energy certification, introduction of renewable energy sources and heat recovery in ventilation systems. The normative requirements for determining the main indicators of energy efficiency of the building, namely the specific thermal resistances of the enclosing structures and the specific energy consumption of the building for heating and cooling are given.
The energy efficiency class "D" was assigned to a new multi-apartment residential building with thermal resistances of the enclosure structures and gas boilers in the heated rooms according to the standards. Measures to increase the energy efficiency of the building are proposed and their impact on such indicators as specific energy consumption of heating and cooling, specific consumption of primary energy, specific emissions of greenhouse gases is estimated.
The effect of strengthening the thermal insulation of the external walls and the building covering was analyzed in comparison with the normative values of the reduced thermal resistance of the fences. The results of reducing energy consumption and greenhouse gases due to the introduction of heat recovery of the ventilation system of built-in public spaces are shown. The effect of installing a condensing gas boiler and an air-to-water or air-to-air heat pump is given. The results of determining the effectiveness of the use of centralized heat supply to meet the needs of heating and hot water supply of a multi-apartment residential building were evaluated.
Keywords: building energy consumption, energy efficiency class, specific thermal resistance, specific primary energy consumption, specific greenhouse gas emissions.
References
Концепція Державної цільової економічної програми підтримки термомодернізації будівель до 2030 року. [Електронний ресурс]. Режим доступу: https://zakon.rada.gov.ua/laws/show/1228-2023- %D1 %80#Text . Дата звернення 24.10.2024.
Закон України «Про енергетичну ефективність будівель». Відомості Верховної Ради. Офіц. вид. Київ, Україна: Парлам. вид-во, 2017, 359 с.
ДБН В.2.6-31:2021 Теплова ізоляція та енергоефективність будівель. Київ, Україна. Міністерство розвитку громад та територій України, 2022, 23 с.
Мінрегіон України, Наказ № 260 від 27.10.2010 Про затвердження Мінімальних вимог до енергетичної ефективності будівель. [Електронний ресурс]. Режим доступу: https://zakon.rada.gov.ua/laws/show/z1257-20#Text . Дата звернення 24.10.2024 .
ДСТУ Б В.2.2-39:2016 Методи та етапи проведення енергетичного аудиту будівель. Київ, Україна. Мінрегіон України, 2016, 47 с.
Мінрегіон України, Наказ №169 від 11.07.2018 Про затвердження Методики визначення енергетичної ефективності будівель. Режим доступу: https://zakon.rada.gov.ua/laws/show/z0822-18#Text . Дата звернення 24.10.2024.
ДСТУ 9190: 2022, Енергетична ефективність будівель. Метод розрахунку енергоспоживання під час опалення, охолодження, вентиляції, освітленні та гарячого водопостачання. ДП «УкрНДНЦ», 2022, 152 с.
ДСТУ 9191: 2022, Теплоізоляція будівель. Метод вибору теплоізоляційного матеріалу для утеплення будівель. ДП «УкрНДНЦ», 2023, 60 с.
G. Naumanna, E. Schroppa, and M. Gaderera, “Life Cycle Assessment of an Air-Source Heat Pump and a Condensing Gas Boiler Using an Attributional and a Consequential Approach,” in 29th CIRP Life Cycle Engineering Conference, pp. 351-356. 2022.
A. Prozuments, J. Zemitis, and A. Bulanovs, “Cold Climate Challenges: Analysis of Heat Recovery Efficiency in Ventilation Systems,” Energies, № 16, pp. 74-83, 2023.
M. F, Yozy Kepdib, R. M. Singh, C. Madiai, and J. A. Facciorusso, “Heating and cooling geothermal systems in urban settings: The potential of energy micropiles,” Renewable and Sustainable Energy Reviews, vol. 208, 2025.
М. Masiukiewicz, M. Tanczuk, S. Anweiler, G. Streckiene, and S. Boldyryev, “Long-term climate-based sizing and economic assessment of air-water heat pumps for residential heating,” Applied Thermal Engineering, vol. 258, 2025.
H. Liang, X. Xie, M Liu, S. Niu, and H. Su, “Research on Strategies for Air-Source Heat Pump Load Aggregation to Participate in Multi-Scenario Demand Response,” Energies, no. 17, pp. 2471, 2024.
N. Serey, D. Ahmad, and H. Jouhara, “Air-to-air heat pump: review of recent advances and future potential,” E3S Web of Conferences, no. 116, pp. 00074, 2019.
Downloads
-
pdf (Українська)
Downloads: 0
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).