Modern Approaches to Reactive Power Compensation in AC Traction Power Supply Systems
DOI:
https://doi.org/10.31649/1997-9266-2024-177-6-34-44Keywords:
reactive power, compensation, traction power supply,, energy efficiency, measurement results, FACTS (Flexible Alternating Current Transmission System), harmonic distortion, power factorAbstract
The article considers the problem of reactive power compensation in AC traction power supply systems, which is of particular importance in the context of the energy crisis caused by military actions, which is relevant for Ukraine. Reactive power is an important component of electric networks, which significantly affects the stability and quality of power supply. The article highlights the impact of reactive power on the efficiency of traction substations serving railway transport. Special attention is paid to the technical aspects of the problem and the analysis of the effectiveness of existing compensation methods, which is critically important for reducing electricity losses and increasing the overall efficiency of power supply systems. In conditions of outdated equipment and limited resources, the problem becomes more complicated, which requires the implementation of modern technological solutions.
The paper analyzes main methods and devices for compensation of reactive power, in particular, such as capacitor units and synchronous compensators, as well as the use of modern technologies of flexible alternating current transmission systems (FACTS). Particular attention is paid to experimental studies conducted at a real traction substation, where reactive power was measured and the effectiveness of compensating devices was shown. Research results show that reactive power compensation allows to significantly reduce energy losses, improve the quality of electricity and increase the stability of the network.
The article also discusses the prospects of implementing FACTS systems for dynamically regulating reactive power and improving the operation of electrical networks. The use of these systems can significantly increase the reliability and efficiency of the power system, especially in the context of the integration of renewable energy sources such as solar and wind power plants. This will ensure reliable power supply in critical conditions and increase the efficiency of Ukraine’s energy infrastructure.
References
Д. О. Босий, «Забезпечення паралельної роботи тягових підстанцій змінного струму в умовах транзитних перетікань потужності,» Енергетика: економіка, технології, екологія, № 2, с. 95-103, 2015.
I. Verbytskyi and K. Khodakov, “Analysis of electricity quality parameters within installing reactive power compensators,” Bulletin of the National Technical University «KhPI». Series: New Solutions in Modern Technologies, vol. 45 (1321), pp. 234-242, 2018. [Online]. Available: https://doi.org/10.20998/2413-4295.2018.45.32 . Accessed: Apr. 15, 2024.
В. В. Кирик, Методи організації гнучких електричних систем, навч. посіб. для студ. спеціальності 141 «Електроенергетика, електротехніка та електромеханіка», спеціалізації «Електричні системи і мережі», КПІ ім. Ігоря Сікорського, Київ, 2021.
В. Г. Сиченко, і Д. О. Босий, «Критерії керування пристроями компенсації реактивної потужності тягових підстанцій змінного струму,» Гірнича електромеханіка та автоматика, № 83, с. 36-45, 2009.
Ю. Л. Саєнко, Т. К. Бараненко, і Є. В. Бараненко, «Методи компенсації реактивної потужності в мережах з нелінійними навантаженнями,» Вісник Приазовського Державного Технічного Університету, серія: технічні науки, № 26, с. 204-210, 2013.
M. Jaramillo, D. Carrión, and J. A. Muñoz, “A Deep Neural Network as a Strategy for Optimal Sizing and Location of Reactive Compensation Considering Power Consumption Uncertainties,” Energies, vol. 15, pp. 9367, 2022. [Online]. Available: https://doi.org/10.3390/en15249367 . Accessed: Nov. 07, 2023.
M. Jaramillo, L. Tipan, and J. A. Muñoz, “A novel methodology for optimal location of reactive compensation through deep neural networks,” SSRN Electronic Journal, 2022. [Online]. Available: https://doi.org/10.2139/ssrn.4139215 . Accessed: Jan. 12, 2024.
D. Błaszczok, et al., “Forecasting of reactive power consumption with the use of artificial neural networks,” Electronics, vol. 11, no. 13, p. 2005, 2022. [Online]. Available: https://doi.org/10.3390/electronics11132005 . Accessed: Feb. 27, 2024.
Є. І. Сокол, та ін., Облік та компенсація реактивної потужності при несиметричних режимах роботи систем електропостачання, Харків, Україна: ФОП Панов А. Н., 2017.
Dewesoft, “Power Analysis Measurement.” [Online]. Available: https://training.dewesoft.com/online/course/power-analysis. Accessed: Feb. 07, 2024.
A. Hoevenaars, “How Harmonics Have Contributed to Many Power Factor Misconceptions,” Mirus International Inc., 2014. [Electronic resource]. Available: https://www.mirusinternational.com/downloads/MIRUS-TP003-A-How%20Harmonics%20have%20Contributed%20to%20Many%20Power%20Factor%20Misconceptions.pdf. Accessed: Apr. 02, 2024.
S. Basu, “Note on Harmonic Distortion Control Power Factor Correction Circuitry for Switched Mode Power Supply,” Research Gate, 2018. [Electronic resource]. Available: https://www.researchgate.net/publication/323187242_Note_on_Harmonic_Distortion_Control_Power_Factor_Correction_Circuitry_for_Switched_Mode_Power_Supply_MN . Accessed: Mar. 17, 2024.
NHP Electrical Engineering Products Pty Ltd., “Power Quality and Harmonics in Electrical Systems,” 2017. [Online]. Available: https://www.nhp.com.au/-/media/Project/NHP/Sites/Shared/White-Papers/Files/NHPTNL65.pdf. [Accessed: May 27, 2024].
ATEC Ltd., «Руководство по эксплуатации EDL175XR,» 2023. [Online]. Available: https://www.satec-global.com/wp-content/uploads/2023/03/EDL175-Manual-Russian.pdf . Accessed: Jan. 14, 2024.
ABR Electric, «Системи FACTS від компанії ABB: Опис, переваги, можливості.»[Electronic resource]. Available: https://abr-electric.com.ua/abb/facts.html . Accessed: Aug. 12, 2024.
Гнучкі системи передачі змінного струму, Wikiwand. [Electronic resource]. Available: https://www.wikiwand.com/uk/articles/Гнучкі_системи_передачі_змінного_струму . Accessed: Aug. 21, 2024.
IEEE Std 1459-2010, “IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions,” Power System Instrumentation and Measurements Committee of the IEEE Power & Energy Society, 2010.
Hitachi Energy, “Reference: Black Oak.” [Electronic resource]. Available:
https://www.hitachienergy.com/news-and-events/customer-success-stories/reference-black-oak . Accessed Dec. 1, 2024.
ABB, Get the FACTS on FACTS. [Electronic resource]. Available: https://new.abb.com/news/detail/41960/get-the-facts-on-facts . Accessed: Dec. 01, 2024.
Downloads
-
pdf (Українська)
Downloads: 0
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).