Analysis of Operating Modes of Power Supply Systems Using Business Analytics Tools

Authors

  • D. O. Bosyi Ukrainian State University of Science and Technologies, Dnipro
  • D. R. Zemskyi Ukrainian State University of Science and Technology, Dnipro
  • A. V. Antonov Ukrainian State University of Science and Technology, Dnipro
  • T. I. Drubetska Ukrainian State University of Science and Technology, Dnipro
  • I. Yu. Potapchuk Ukrainian State University of Science and Technology, Dnipro

DOI:

https://doi.org/10.31649/1997-9266-2024-176-5-23-32

Keywords:

power supply system, operating mode, load, electrified railway, electric locomotive, unbalance, non-sinusoidal waveform, business analytics, big data, analytics platform, visualization, interactive pane, dashboard

Abstract

The article discusses the application of modern business analytics tools to the analysis of operating modes of an alternating current power supply system, using the example of an electrified section of an AC railway with phase-by-phase measurement of instantaneous voltage and current values obtained from solving a system of differential equations. The analysis of the power supply system’s operating modes is justified by selecting analytical platforms such as Power BI, which has deep integration with Microsoft products, Tableau, known for its powerful data visualization capabilities, and Qlik, which employs an associative data model, allowing users to interact with data without the need to predict analysis methods.

The AC railway power supply system under consideration includes traction substations and non-traction loads powered by the "two-wire-rail" (TWR) lines, as well as the external power supply system from which traction substations receive electricity. Based on the obtained instantaneous current values, Matlab՚s computer algebra tools were used to calculate the voltages at the nodes of the power supply system. Power components and integral indicators were calculated in the QlikView environment, which is used for processing a large volume of numerical data and visualizing it.

The interactivity of switching between visualizations and the associative data model in QlikView allowed time savings when analyzing large amounts of information in the form of instantaneous voltage and current values obtained by solving hundreds of differential equations using numerical methods. Using a script with Qlik՚s own data processing language enabled the derivation of integral energy characteristics by applying standard data aggregation functions and principles for determining effective values for alternating current circuits.

Author Biographies

D. O. Bosyi, Ukrainian State University of Science and Technologies, Dnipro

Dr. Sc. (Eng.), Professor, Head of the Chair of Intelligent Energy Supply

D. R. Zemskyi, Ukrainian State University of Science and Technology, Dnipro

PhD, Associate Professor of the Chair of Intelligent Energy Supply

A. V. Antonov, Ukrainian State University of Science and Technology, Dnipro

Cand. Sc. (Eng.), Associate Professor, Associate Professor of the Chair of Intelligent Energy Supply

T. I. Drubetska, Ukrainian State University of Science and Technology, Dnipro

Cand. Sc. (Eng.), Associate Professor, Associate Professor of the Chair of Intelligent Energy Supply

I. Yu. Potapchuk, Ukrainian State University of Science and Technology, Dnipro

Cand. Sc. (Eng.), Associate Professor, Associate Professor of the Chair of Intelligent Energy Supply

References

H. Akhavan-Hejazi, and H. Mohsenian-Rad, “Power systems big data analytics: An assessment of paradigm shift barriers and prospects,” Energy Reports., vol. 4, pp. 91-100, Nov. 2018. [Electronic resource]. Available: https://doi.org/10.1016/j.egyr.2017.11.002 . Accessed: Apr. 13, 2024.

M. Kezunovic, P. Pinson, Z. Obradovic, S. Grijalva, T. Hong, and R. Bessa, “Big data analytics for future electricity grids,” Electric Power Syst. Res., vol. 189, p. 106788, Dec. 2020. [Online]. Available: https://doi.org/10.1016/j.epsr.2020.106788 . Accessed: Apr. 13, 2024.

Marek Moleda and Dariusz Mrozek, “Big data in power generation,” Beyond Databases, Archit. Struct. Paving Road Smart Data Process. Anal., vol. 1018, pp. 19-29, 2019.

J. M. Davila Delgado, L. Oyedele, M. Bilal, A. Ajayi, L. Akanbi, and O. Akinade, “Big data analytics system for costing power transmission projects,” J. Construction Eng. Manage, vol. 146, no. 1, p. 05019017, Jan. 2020. [Electronic resource]. Available: https://doi.org/10.1061/(asce)co.1943-7862.0001745 . Accessed: Apr. 13, 2024.

Z. Zhou, “Intelligent prediction method for power generation based on deep learning and cloud computing in big data networks,” Int. J. Intell. Netw., vol. 4, pp. 224-230, 2023. [Online]. Available: https://doi.org/10.1016/j.ijin.2023.08.004 . Accessed: Apr. 13, 2024.

О. І. Піжук, «Великі дані як основоположний драйвер цифрової трансформації економіки,» Економіка та держава, № 6, c. 50-54, 2019.

М. О. Ястребенецький, і О. М. Дибач, «Перспективи застосування технологій Big Data в атомній енергетиці України,» Ядерна та радіаційна безпека, № 2 (82), с. 9-13, черв. 2019. [Електронний ресурс]. Режим доступу: https://doi.org/10.32918/nrs.2019.2(82).02 . Дата звернення: 14 квіт. 2024.

С. А. Шворов та ін., «Збирання біомаси для біогазових установок з використанням технології "Big data",» Енергетика і автоматика, № 5, с. 13-22, 2018. [Електронний ресурс]. Режим доступу: http://nbuv.gov.ua/UJRN/eia_2018_5_4 . Дата звернення: 14 квіт. 2024.

Gartner Magic Quadrant for Analytics and Business Intelligence Platforms 2022. [Electronic resource]. Available: https://www.interdobs.nl/sac/gartner-magic-quadrant-for-analytics-and-business-intelligence-platforms-2022/ .

Gartner Quadrant Leaders for Analytics and BI: Qlik Sense vs Microsoft Power BI vs Tableau. [Online]. Available: https://datalabsua.com/en/leaders-quadrant-of-the-magic-quadrant-for-analytics-and-bi-qlik-sense-vs-microsoft-power-bi-vs-tableau/ .

Qlik became a Gartner Magic Quadrant leader for the 10th year in a row! [Online]. Available: https://datalabsua.com/en/qlik-became-a-gartner-magic-quadrant-leader-for-the-10th-year-in-a-row/ .

D. Bosyi, and D. Zemskyi, “Increasing Power Supply Efficiency for “Two WireRail” Line Consumers,” Problemy Kolejnictwa, 2020. Iss. 188. pp. 93-102. https://doi.org/10.36137/1881E .

Downloads

Abstract views: 43

Published

2024-10-31

How to Cite

[1]
D. O. Bosyi, D. R. Zemskyi, A. V. Antonov, T. I. Drubetska, and . I. Y. Potapchuk, “Analysis of Operating Modes of Power Supply Systems Using Business Analytics Tools”, Вісник ВПІ, no. 5, pp. 23–32, Oct. 2024.

Issue

Section

ENERGY GENERATION, ELECTRIC ENGINEERING AND ELECTROMECHANICS

Metrics

Downloads

Download data is not yet available.