A Method for the Compressibility Factor Calculation of Natural Gas-Hydrogen Blends, Using a Regression Equation and an Artificial Neural Network Algorithm

Authors

  • N.-A. Yu. Soroka Ivano-Frankivsk National Technical University of Oil and Gas
  • P. M. Raiter Ivano-Frankivsk National Technical University of Oil and Gas

DOI:

https://doi.org/10.31649/1997-9266-2024-174-3-6-13

Keywords:

hydrogen-natural gas blend, natural gas, compressibility factor, regression equation, artificial neural network

Abstract

To calculate the operating modes of gas pipelines and for the commercial metering of consumed or transported gas, it is necessary to take into account its compressibility factor, which is determined using equations of state or correlation dependencies. Equations of states are characterized by high calculation accuracy but require a significant amount of various data for calculations, so they are used for commercial gas metering. Correlation equations are usually used to calculate network parameters, which are less accurate but much easier to calculate. Gas transmission network operators use correlation equations for determining the compressibility factor based on carbon dioxide content or relative density, as given in SOU 60.3-0019801-100:2012.

When these equations are applied to calculate the compressibility factor of natural gas-hydrogen blends with volumetric hydrogen content up to 20%, an increase in error is observed with increasing hydrogen concentration. The equation based on the relative density is more accurate when calculating the natural gas-hydrogen mixture’s compressibility factor since the hydrogen content directly affects the density of the blend. The carbon dioxide equation is generally insensitive to changes in hydrogen concentration within the blend. Thus, it is worth adding a hydrogen variable to the equation to reduce calculation errors.

In this article, the selection of the hydrogen variable coefficient is carried out by the classical regression method, in which the equations are modified by supplementing the existing equations for calculating the compressibility factor with the addition of the product of the hydrogen content in the mixture by the calculated coefficient, and the equation's bias adjustment.

An alternative way to calculate the compressibility factor is to use artificial neural networks (ANNs). In the course of this work, a two-layer artificial neural network with back-propagation of error was developed. This ANN receives as input a set of values of carbon dioxide and hydrogen content, temperature, and pressure, and outputs the value of the compressibility factor.

Author Biographies

N.-A. Yu. Soroka, Ivano-Frankivsk National Technical University of Oil and Gas

Post-Graduate Student of the Chair of Information And Measuring Technologies

P. M. Raiter, Ivano-Frankivsk National Technical University of Oil and Gas

Dr. Sc. (Eng.), Professor of the Chair of Information and Measuring Technologies

References

M. Farzaneh-Gord, et al., “Accurate determination of natural gas compressibility factor by measuring temperature, pressure and Joule-Thomson coefficient: Artificial neural network approach,” Journal of Petroleum Science and Engineering, vol. 202, 2021.

K. E. Starling, and J. L. Savidge, “Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases,” American Gas Association, Transmission Measurement Committee Report, no. 8, and American Petroleum Institute, MPMS Chapter 14.2, 2nd ed., 1994.

International Organization for Standardization, “Natural Gas – Calculation of Compression Factor, Part 2: Calculation using molar-composition analysis,” ISO 12213-2, 2006.

International Organization for Standardization, “Natural Gas – Calculation of Compression Factor, Part 3: Calculation using physical properties,” ISO 12213-3, 2006.

R. H. Zimmerman, “Manual for the Determination of Supercompressibility Factors for Natural Gas,” PAR Project NX-19, Ohio State University, 1962.

G. Muller-Syring, et al., “Management summary. Entwicklung von modularen Konzepten zur Erzeugung, Speicherung und Einspeisung von Wasserstoff und Methan ins Erdgasnetz,” 2013.

M. Dell’Isola, et al., “Impact of hydrogen injection on thermophysical properties and measurement reliability in natural gas networks,” E3S Web Conf., vol. 312, 2021.

M. Łach, “Dokładność wyznaczania współczynnika ściśliwości gazu z podwyższoną zawartością wodoru – porównanie metod obliczeniowych,” NG, vol. 72, no. 5, pp. 329-338, 2016.

Н.-А. Сорока і М. Карпаш, «Дослідження придатності кореляційних методів визначення коефіцієнта стиснення газоводневих сумішей,» Вимірювальна та обчислювальна техніка в технологічних процесах, вип. 4, с. 111-120, 2023.

СОУ 60.3-30019801-100:2012, «Газ природний горючий. Визначення обсягів витрат природного газу на виробничо-технологічні потреби під час його транспортування газотранспортною системою та експлуатації підземних сховищ газу. Порядок розрахунку,» 2012.

Паспорт ФХП природного газу [Електронний ресурс]. Режим доступу: https://gaz.kherson.ua/?cat=30 .

Оперативні дані оператора ГТС (ГДП, ВБГ) про чисельні значення ФХП природного газу в точках його надходження до ГРМ [Електронний ресурс]. Режим доступу: https://www.chergas.ck.ua/spozhivacham/yakist-gazu-vid .

АТ «Укртрансгаз», «Якість газу у грудні 2019 року по регіонах України,» 2020. [Електронний ресурс]. Режим доступу: http://utg.ua/utg/media/news/2020/01/gq-2019-12.html .

Downloads

Abstract views: 186

Published

2024-06-21

How to Cite

[1]
N.-A. Y. Soroka and P. M. Raiter, “A Method for the Compressibility Factor Calculation of Natural Gas-Hydrogen Blends, Using a Regression Equation and an Artificial Neural Network Algorithm”, Вісник ВПІ, no. 3, pp. 6–13, Jun. 2024.

Issue

Section

Automation and information-measuring equipment

Metrics

Downloads

Download data is not yet available.