Security Methodology of Neural Network-Based Information Technologies for Detection of Deepfake-Modifications of Biometric Image

Authors

  • H. V. Mykytyn Lviv Polytechnic National University
  • Kh. S. Ruda Lviv Polytechnic National University
  • Yu. Ye. Yaremchuk Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1997-9266-2024-172-1-74-80

Keywords:

intellectualization, cyber security,, biometric image, deepfake, information technology, neural networks, detection system, basic approach, security methodology, comprehensive security system

Abstract

One of the functional vectors of the Cybersecurity Strategy of Ukraine is the development and implementation of protection systems for various information platforms in society's infrastructure, particularly focusing on creating safe technologies to detect deepfake-modifications of biometric images, based on neural networks in cyberspace. This paper presents the security principles of neural network information technologies (IT) within the context of deepfake-modifications. It delineates a basic approach for safely detecting deepfake-modifications in biometric images and outlines a security methodology for multi-level neural network IT systems, organized according to the "object – threat – protection" concept. The basic approach integrates information neural network technology with decision support IT, structured by a modular architecture for detecting deepfake modifications. This architecture operates across the stages of "pre-processing of feature data – classifier training." The core of the IT security methodology emphasizes the integrity of neural network systems for detecting deepfake-modifications in biometric images, coupled with data analysis systems that execute the information process of "dividing video files into frames – detecting and processing features – evaluating the accuracy of image classifiers. The security methodology for multi-level neural network IT relies on systemic and synergistic approaches to construct a comprehensive IT security system. This system accounts for the possibility of emergent threats and incorporates cutting-edge countermeasure technologies at both hardware and software levels. The proposed comprehensive security system for detecting deepfake-modifications in biometric images encompasses hardware and software tools across several segments: automated classifier accuracy assessment, real-time deepfake-modification detection, sequential image processing, and classification accuracy evaluation utilizing cloud computing.

Author Biographies

H. V. Mykytyn, Lviv Polytechnic National University

Dr. Sc. (Eng.), Professor, Professor of the Chair of Information Security

Kh. S. Ruda, Lviv Polytechnic National University

Post-Graduate Student of the Chair of Information Security

Yu. Ye. Yaremchuk, Vinnytsia National Technical University

Dr. Sc. (Eng.), Professor, Director of the Center of Information Technologies and Information Security, Professor of the Chair of Management and Information Security

References

H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Business & Information Systems Engineering, no. 6, pp. 239-242, 2014. https://doi.org/10.1007/s12599-014-0334-4 .

Стратегія кібербезпеки України (2021—2025 року). [Електронний ресурс]. Режим доступу: https://www.rnbo.gov.ua/files/2021/STRATEGIYA%20KYBERBEZPEKI/proekt%20strategii_kyberbezpeki_Ukr.pdeepfake .

Directorate-General for Communications Networks. Content and Technology, Cyber resilience act: new EU cybersecurity rules ensure more secure hardware and software products, European Commission, 2022. Available: https://data.europa.eu/doi/10.2759/543836 .

Y. Shtefaniuk, and I. Opirskyy, “Comparative Analysis of the Efficiency of Modern Fake Detection Algorithms in Scope of Information Warfare,” in 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), pp. 207-211, 2021. https://doi.org/10.1109/IDAACS53288.2021.9660924.1 .

Ю. Я. Бобало, В. Б. Дудикевич, і Г. В. Микитин. Стратегічна безпека системи «об’єкт – інформаційна технологія». Львів, Україна: вид-во НУ «Львівська політехніка», 2020.

M. Choraś, M. Pawlicki, D. Puchalski, and R. Kozik, “Machine Learning – The Results Are Not the only Thing that Matters! What About Security, Explainability and Fairness?” in Lecture Notes in Computer Science, vol. 12140. Springer, Cham. https://doi.org/10.1007/978-3-030-50423-6_46 .

N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “SoK: Security and Privacy in Machine Learning,” in 2018 IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 2018, pp. 399-414. https://doi.org/10.1109/EuroSP.2018.00035 .

H. Bae, J. Jang, D. Jung, H. Jang, H. Ha, and S. Yoon. “Security and Privacy Issues in Deep Learning,” 2018 ArXiv, abs/1807.11655.

Q. Xu, M. Tanvir Arafin, and G. Qu, “Security of Neural Networks from Hardware Perspective: A Survey and Beyond,” in 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC), Tokyo, Japan, 2021, pp. 449-454.

X. Cao, and N. Z. Gong. “Understanding the Security of Deepfake Detection,” in: Digital Forensics and Cyber Crime. ICDF2C 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 441. Springer, Cham, 2022.

В. Б. Дудикевич, Г. В. Микитин, і Х. С. Руда, «Застосування глибокого навчання для виявлення deepfake-модифікацій біометричного зображення,” Сучасна спеціальна техніка, № 1, c. 13-22, 2022.

W. J. Youden, “Index for rating diagnostic tests,” Cancer, no. 3, pp. 32-35, 1950. https://doi.org/ 10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3. PMID 15405679.

E. Altuncu, V. Franqueira, and L. Shujun, Deepfake: Definitions, Performance Metrics and Standards, Datasets and Benchmarks, and a Meta-Review, 2022. 10.48550/arXiv.2208.10913 .

C2PA. 2020. Coalition for Content Provenance and Authenticity. [Electronic resource]. Available: https://c2pa.org/

Downloads

Abstract views: 69

Published

2024-02-27

How to Cite

[1]
H. V. Mykytyn, K. S. . Ruda, and Y. Y. Yaremchuk, “Security Methodology of Neural Network-Based Information Technologies for Detection of Deepfake-Modifications of Biometric Image”, Вісник ВПІ, no. 1, pp. 74–80, Feb. 2024.

Issue

Section

Information technologies and computer sciences

Metrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)