Energy Characteristics of Thermal Desalation Systems with Different Types of Humidifiers
DOI:
https://doi.org/10.31649/1997-9266-2023-171-6-14-22Keywords:
energy characteristics, air humidification-dehumidification, contact heat exchanger, thermal desalinationAbstract
The demand for potable water is increasing worldwide due to population growth, urbanization, industrialization, agricultural activity, and socio-economic development. One of the solutions of this problem is the development of reliable and cost-effective autonomous decentralized water desalination systems. The air humidification-dehumidification cycle is a promising method of thermal water desalination. Such systems have a simple design, low initial and operating costs and use renewable energy to operate.
The directions of development of thermal water desalination technology with air humidification-dehumidification cycle are considered. The main indicators used to evaluate the efficiency of such systems are noted. It is shown that the main element that determines the performance of the installation is a humidifier — a contact heat exchanger for evaporating moisture from salt water into the air. A review of scientific works on experimental studies of the most common types of humidifiers was carried out. The advantages and disadvantages of the proposed constructions were determined and their energy indicators were analyzed (energy efficiency coefficient, fresh water consumption, mass flow coefficient, recovery coefficient and aerodynamic pressure drop).
Graphical dependencies of thermodynamic efficiency on the mass flow rate and aerodynamic pressure drop on the specific productivity for different types of humidifiers are plotted. It was found that in order to provide high thermodynamic efficiency, humidifiers with packing material and bubble heat exchangers require high mass flow rate of salt water and have significant aerodynamic pressure drop. The absence of measurements of water and air pressure drops was established in most experimental studies. Further directions for improving the efficiency of thermal desalination plants with air humidification-dehumidification cycle are outlined.
References
В. В. Середа та ін., «Термодинамічний аналіз термічної опріснювальної установки з циклом зволоження–осушення повітря,» Наукові вісті КПІ, № 4, с. 69-76, 2021. https://doi.org/10.20535/kpisn.2021.4.250663 .
В. В. Середа та ін., «Термодинамічний аналіз системи термічного знесолення води з відкритим і закритим повітряним циклом,» Вчені записки ТНУ імені В.1. Вернадського. Серія: Технічні науки, т. 33 (72), № 6, с. 146-152, 2022. https://doi.org/10.32782/2663-5941/2022.6/25 .
В. В. Середа та ін., «Високоефективний контактний зволожувач для термічної опріснювальної установки,» Енергетика: економіка, технології, екологія, № 3, с. 131-138, 2023. https://doi.org/10.20535/1813-5420.3.2023.289729 .
F. Nematollahi et al., “Experimental and theoretical energy and exergy analysis for a solar desalination system,” Desalination, vol. 317, no. 15, pp. 23-31, May, 2013. http://dx.doi.org/10.1016/j.desal.2013.02.021 .
A. E. Kebeel et al., “Experimental study of a humidification-dehumidification solar technique by natural and forced air circulation,” Energy, vol. 68, no. 15, pp. 218-228, April, 2014. http://dx.doi.org/10.1016/j.energy.2014.02.094 .
Abu El Nasr et al., “Water Desalination using Solar Energy: Humidification and Dehumidification Principle,” Innovative Energy & Research, vol. 4, no. 3, pp. 1-6, 2015. https://doi.org/10.4172/2576-1463.1000121 .
Z. Rahimi-Ahar et al., “Experimental investigation of a solar vacuum humidification-dehumidification (VHDH) desalination system,” Desalination, vol. 437, no. 1, pp. 73-80, July, 2018. https://doi.org/10.1016/j.desal.2018.03.002 .
Z. Rahimi-Ahar et al., “Comprehensive study on vacuum humidification-dehumidification (VHDH) desalination,” Applied Thermal Engineering, vol. 169, no. 25, pp. 114944, March, 2020. https://doi.org/10.1016/j.applthermaleng.2020.114944 .
Emad M. S. El-Said et al., “Solar desalination unit coupled with a novel humidifier,” Renewable Energy, vol. 180, pp. 297-312, December, 2021. https://doi.org/10.1016/j.renene.2021.08.105 .
Emad M. S. El-Said et al., “Humidification-dehumidification solar desalination system using porous activated carbon tubes as a humidifier,” Renewable Energy, vol. 187, pp. 657-670, March, 2022. https://doi.org/10.1016/j.renene.2022.01.023.
V. Patel et al., “Experimental and theoretical evaluation of bubbler humidifier for humidification-dehumidification water desalination system,” Heat and Mass Transfer, no. 30, May, 2019. https://doi.org/10.1007/s00231-019-02659-1 .
Z. Zeng et al., “A highly effective multi-string humidifier with a low gas stream pressure drop for desalination,” Desalination, vol. 449, no. 1, pp. 92-100, January, 2019. https://doi.org/10.1016/j.desal.2018.10.017 .
Gamal B. Abdelaziz et al., “Humidification dehumidification saline water desalination system utilizing high frequency ultrasonic humidifier and solar heated air stream,” Thermal Science and Engineering Progress, vol. 27, no. 1, pp. 101144, January, 2022. https://doi.org/10.1016/j.tsep.2021.101144 .
Reda A. Khalaf-Allah et al., “Development of a centrifugal sprayer-based solar HDH desalination unit with a variety of sprinkler rotational speeds and droplet slot distributions,” Renewable Energy, vol. 190, pp. 1041-1054, May, 2022. https://doi.org/10.1016/j.renene.2022.04.019 .
K. Thanaiah et al., “Experimental analysis on humidification-dehumidification desalination system using different packing materials with baffle plates,” Thermal Science and Engineering Progress, vol. 22, no. 1, pp. 100831, May, 2021. https://doi.org/10.1016/j.tsep.2020.100831 .
Saddam Hussain Soomro et al., “Effect of humidifier characteristics on performance of a small-scale humidification-dehumidification desalination system,” Applied Thermal Engineering, vol. 210, no. 25, pp. 118400, June, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118400 .
K. Garg et al., “Experimental investigation of a low-cost humidification-dehumidification desalination cycle using packed-bed humidifier and finned-tube heat exchanger,” Thermal Science and Engineering Progress, vol. 41, no. 1, pp. 101858, June, 2023. https://doi.org/10.1016/j.tsep.2023.101858 .
T. Rajaseenivasan et al., “An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy,” Energy Conversion and Management, vol. 139, no. 1, pp. 232-244, May, 2017. http://dx.doi.org/10.1016/j.enconman.2017.02.043 .
E. Eder et al., “Experimental analysis of the humidification of air in bubble columns for thermal water treatment systems,” Experimental Thermal and Fluid Science, vol. 115, no. 1, pp. 110063, July, 2020. https://doi.org/10.1016/j.expthermflusci.2020.110063.
L. Aref et al., “An experimental investigation on a portable bubble basin humidification/dehumidification desalination unit utilizing a closed-loop pulsating heat pipe,” Energy Conversion and Management, vol. 228, no. 15, pp. 113694, January, 2021. https://doi.org/10.1016/j.enconman.2020.113694 .
Downloads
-
pdf (Українська)
Downloads: 109
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).