Information Technology of Time Series Forecasting of New COVID-19 Disease Patients Based on Prophet Model
DOI:
https://doi.org/10.31649/1997-9266-2023-170-5-50-59Keywords:
information technology, COVID-19, time series forecasting, Prophet, Fourier series, artificial intelligence, forecasting development scenarios, Python, KaggleAbstract
The article describes the results of the development of information technology for forecasting the time series of the number of COVID-19 patients. A review of the developments on this subject was carried out and the choice of the Facebook Prophet library as the basis for the developed IT was substantiated. It is proposed to increase the accuracy of the forecasting of the number of new coronavirus patients in the short-term using the selected model.
Mathematical substantiation of the available parallel-serial iterative methods for identifying the parameters of the Facebook Prophet model to take into acco0unt the significant volatility of the number of new patients was proposed. The methods make it possible to determine the hyperparameters of the trend of the series, its seasonal components and anomalies affecting the value of this series. The approach to comparative analysis of the influence of the main incidence trends of regions (or countries) without considering the influence of anomalies and seasonal components has been formalized by creating cartograms that enable to analyze trends in the spread of the disease in a given region.
The architecture of the proposed information technology is developed, and its components are described. A Python software based on the Kaggle platform was created, it implements this technology, the results of its application is compared with the SEIR-U model, developed by the scientists of the National Academy of Sciences of Ukraine, based on the reports of the Working Group on Mathematical Modeling of Problems Related to the SARS-CoV-2 Coronavirus Epidemic, at the National Academy of Sciences of Ukraine according to data, obtained in the period 2020—2022. The comparison, carried out, proved the effectiveness of the proposed information technology.
References
І. О. Бровченко, «Розробка математичної моделі поширення епідемії COVID-19 в Україні,» Світогляд, № 2 (82), с. 2-14, 2020.
P. Furtado, “Epidemiology SIR with Regression, Arima, and Prophet in Forecasting Covid-19,” Engineering Proceedings, no. 5(1), 52, July, 2021. https://doi.org/10.3390/engproc2021005052 .
R. Ospina, J.A.M. Gondim, V. Leiva, and C. Castro, “An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil,” Mathematics, 11(14):3069, May, 2023. https://doi.org/10.3390/math11143069 .
A. Hernandez-Matamoros, H. Fujita, T. Hayashi, and H. Perez-Meana, “Forecasting of COVID19 per regions using ARIMA models and polynomial functions,” Applied Soft Computing, vol. 96, 106610, ISSN 1568-4946, November, 2020. https://doi.org/10.1016/j.asoc.2020.106610 .
G. Perone, “Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries,” Econometrics, 10(2):18. January, 2022. https://doi.org/10.3390/econometrics10020018 .
P. Harjule, V. Tiwari, and A. Kumar, “Mathematical models to predict COVID-19 outbreak : An interim review,” Journal of Interdisciplinary Mathematics, no. 24, pp. 1-26, 2021. https://doi.org/10.1080/09720502.2020.1848316 .
S. Taylor, and B. Letham, “Forecasting at Scale,” The American Statistician, 72, 2017. https://doi.org/10.1080/00031305.2017.1380080 .
D. Borges, and M. C. V. Nascimento, “COVID-19 ICU demand forecasting: A two-stage Prophet-LSTM approach,” Applied Soft Computing, vol. 125, 2022. https://doi.org/10.1016/j.asoc.2022.109181 .
G. Perone, “Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy,” The European Journal of Health Economics, no. 23, pp. 917-940, 2022. https://doi.org/10.1007/s10198-021-01347-4 .
В. Б. Мокін, А. В. Лосенко, і А. Р. Ящолт, «Інформаційна технологія аналізу та прогнозування кількості нових випадків хвороби на коронавірус SARS-COV-2 в Україні на основі моделі Prophet,» Вісник Вінницького політехнічного інституту, № 5, с. 71-83, Лист. 2020. https://doi.org/10.31649/1997-9266-2020-152-5-71-83 .
В. Б. Мокін, А. В. Лосенко, і А. Р. Ящолт, «Інформаційна технологія аналізу та прогнозування багатохвильової кількості нових випадків захворювань на коронавірус COVID-19 на основі моделі Prophet,» Вісник Вінницького політехнічного інституту, № 6, с. 65-75, Груд. 2020. https://doi.org/10.31649/1997-9266-2020-153-6-65-75 .
В. Б. Мокін, і А. В. Лосенко, «Картування тренду тижневих прогнозів за моделлю Facebook Prophet зміни кількості нових хворих на коронавірус у країнах Європи протягом січня-березня 2021 року,» на Науково-технічна конференція підрозділів ВНТУ L, Вінниця, 10-12 березня, 2021 р.
В. Б. Мокін, М. В. Дратований, А. В. Лосенко, і С. О. Жуков, «Прогнозування хвиль коронавірусу на основі відновленої когнітивної карти міжрегіонального впливу,» Інформаційні технології та комп’ютерна інженерія, т. 52, вип. 3, с. 86-94, Груд. 2021.
Робоча група з математичного моделювання проблем, пов’язаних з епідемією коронавірусу SARS-CoV-2 в Україні, Прогноз розвитку епідемії COVID-19 в Україні на 14–28 грудня 2020 року («Прогноз РГ-32»), базова установа — Інститут проблем математичних машин і систем НАН України, створена Розпорядженням Президії НАН України від 3 квітня 2020 р. № 198. [Електронний ресурс]. Режим доступу:
http://www.nas.gov.ua/UA/Messages/Pages/View.aspx?MessageID=7277 Дата звернення: 14.10.2023 .
Anthony Goldbloom, COVID-19 data from John Hopkins University. Kaggle. [Електронний ресурс]. Режим доступу: https://www.kaggle.com/datasets/antgoldbloom/covid19-data-from-john-hopkins-university . Дата звернення: 13.10.2023
T. Hale, et al., “A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker),” Nature Human Behaviour. 2021. https://doi.org/10.1038/s41562-021-01079-8 .
Vitalii Mokin, and Arsen Losenko, “COVID-19-UA: Regression with Google mobility”. 2022. [Electronic resource]. Available: https://www.kaggle.com/code/vbmokin/covid-19-ua-regression-with-google-mobility . Accessed: 13.10.2023.
Vitalii Mokin, and Arsen Losenko, “COVID-19 in Ukraine: Explanation of patterns”. [Electronic resource]. Available: https://www.kaggle.com/vbmokin/covid-19-in-ukraine-explanation-of-patterns . Accessed: 13.10.2023.[19] Робоча група з математичного моделювання проблем, пов’язаних з епідемією коронавірусу SARS-CoV-2 в Україні, Прогноз розвитку епідемії COVID-19 в Україні на 14–28 грудня 2020 року («Прогноз РГ-32»), базова установа — Інститут проблем математичних машин і систем НАН України, створена Розпорядженням Президії НАН України від 3 квітня 2020 р., № 198. [Електронний ресурс]. Режим доступу: http://www.nas.gov.ua/UA/Messages/Pages/View.aspx?MessageID=7277 . Дата звернення: 12.10.2023.
Vitalii Mokin, and Arsen Losenko, “COVID in UA: Prophet with 4, Nd seasonality,” Kaggle Notebook. [Electronic resource]. Available: https://www.kaggle.com/code/vbmokin/covid-in-ua-prophet-with-4-nd-seasonality . Accessed: 12.10.2023.
Vitalii Mokin, and Arsen Losenko, “COVID-19: Forecast trends for the many countries,” Kaggle Notebook. [Electronic resource]. Available: https://www.kaggle.com/datasets/vbmokin/covid19-forecast-trends-for-the-many-countries/ . Accessed: 12.10.2023.
Vitalii Mokin, and Arsen Losenko, “COVID-19: Week trends 70 countries mapping,” Kaggle Notebook. [Electronic resource]. Available: https://www.kaggle.com/code/vbmokin/covid-19-week-trends-70-countries-mapping/notebook . Accessed: 12.10.2023 .
Downloads
-
PDF (Українська)
Downloads: 79
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).