Models and Methods of RZ-Signal Distinction for Information-Measuring Systems in Asymmetric Non-Gaussian Noise

Authors

  • V. V. Palahin Cherkasy State Technological University
  • O. S. Zorin Cherkasy State Technological University

DOI:

https://doi.org/10.31649/1997-9266-2023-169-4-78-86

Keywords:

RZ-signals, instantaneous quality criterion, non-Gaussian noise

Abstract

The paper considers a new method of statistical processing of RZ-signals against the background of asymmetric non-gaussian noise. To solve the problem of processing discrete RZ-signals against the background of asymmetric non-gaussian noise, polynomial solving rules (SR) were synthesized. At the degree of a polynomial S = 1, SR represent a system of hypothesis testing rules that do not take into account the non-Gaussian distribution of the studied random processes. When increasing the degree of the polynomial to S = 2, the initial moments of the 3-rd and 4-th orders are used, which makes it possible to take into account the non-Gaussian parameters of the studied random processes, in particular for the formulation of the problem in the form of an asymmetry coefficient. This approach makes it possible to take into account the fine structure of non-Gaussian processes and reduces the probability of SR errors in comparison with the known results. On the basis of a new method of statistical signal processing for data reception, a Simulink-model of the system was developed and its functioning was simulated for SR and S = 1.2 and different values of signal-to-noise ratio. It is shown that when taking into account the coefficient of asymmetry of non- Gaussian interference, the efficiency of signal reception increases for S = 2 when compared with known results, which are optimal for the Gaussian interference model with S = 1. The suggested method of processing the additive mixture of the bipolar discrete RZ-signals on the background of asymmetric non- Gaussian interference, receiving data in telecommunication systems is more efficient as compared with the known methods due to non-linear statistical processing of signals and taking into account the fine structure of the investigated non-Gaussian random processes. The conducted studies demonstrate the decrease of the number of erroneous decisions in t6he process of RZ-signals reception, taking into account the coefficient of asymmetry of non-Gaussian noise, which indicates the increase of the efficiency of the data reception system operation.

Author Biographies

V. V. Palahin, Cherkasy State Technological University

Dr. Sc. (Eng.), Professor, Head of the Chair of Robotics and Telecommunication Systems and Cyber Security

O. S. Zorin, Cherkasy State Technological University

Post-Graduate Student of the Chair of Instrumentation, Mechatronics and Computerized Technologies

References

M. A. Mahmoud, and Ahmed Nabih Zaki Rashed, “Hybrid NRZ/RZ line coding scheme based hybrid FSO/FO dual,” Indonesian Journal of Electrical Engineering and Computer, vol. 22, no. 2, pp. 866-873, May 2021.

D. Middleton, Non-Gaussian Statistical Communication Theory, Jonn Willey & Sons, 2012.

H. L. Van Trees, Detection, Estimation, and Modulation Theory. Part IV: Optimum Array Processing, John Wiley, 2002.

Г. Г. Бортник, М. В. Васильківський, і В. М. Кичак, Методи та засоби первинного цифрового оброблення радіосигналів, моногр. Вінниця, Україна: ВНТУ, 2016, 168 с.

В. М. Безрук, и Г. М. Певцов, Теоретические основы проектирования систем распознавания сигналов для автоматизированного радиоконтроля, моногр. Харьков, Украина: Коллегиум, 2007, 430 с.

A. K. Nandi. Blind Estimation Using Higher-Order Statistics, Springer-Verlag, 1999.

P. Chevalier, and B. Picinbono, “Complex linear-quadratic systems for detection and array processing,” IEEE Trans. Signal Process, vol. 44, no. 10, pp. 2631-2634, 1996.

Y. Kunchenko, Polynomial Parameter Estimations of Close to Gaussian Random Variables, Aachen: Shaker Verlag, 2002.

Y. Kunchenko, Stochastic Polynomial. Kyiv, Ukraine: Naukova Dumka, 2006.

V. Beregun, and A.Krasilnikov, “The use of cumulant methods for distinction of diagnostic signals with gamma distribution,” in 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), pp. 741-746.

E. Palahina, M. Gamcová, I. Gladisova, J. Gamec, and V. Palahin, “Signals Detection in Correlated non-Gaussian Noise Using Higher-Order Statistics,” Circuits, Systems, and Signal Processing, no. 37(4), pp. 1704-1723, 2018.

L. Vokorokos, S. Marchevský, A. Ivchenko, E. Palahina, and V. Palahin, “Parameters Estimation of Correlated non-Gaussian processes by the Method of Polynomial Maximization.,” Submitted to IET Signal Processing, vol. 11, issue 3, pp. 313-319, May 2017, .

В. В Палагін, О. А. Палагіна, і О. С. Зорін, «Комп‘ютерне моделювання системи обробки шумових сигналів на фоні негаусових завад,» Математичне та комп’ютерне моделювання. Серія: Технічні науки, зб. наук. праць. Кам.-Подільський нац. ун-т ім. Івана Огієнка, вип. 16, с. 104-113, 2017.

D. Smirnov, V. Chepynoha, O. Zorin, A. Honcharov, E. Palahina, and V. Palahin, “The Methods of Joint Signal Discrimination and Parameters Estimation in non-Gaussian Noise,” IEEE 4-th International Conference on Advanced Trends in Information Theory – 2022, Kyiv, Ukraine, 2022, pp. 23-27.

Downloads

Abstract views: 112

Published

2023-08-31

How to Cite

[1]
V. V. Palahin and O. S. Zorin, “Models and Methods of RZ-Signal Distinction for Information-Measuring Systems in Asymmetric Non-Gaussian Noise”, Вісник ВПІ, no. 4, pp. 78–86, Aug. 2023.

Issue

Section

Radioelectronics and radioelectronic equipment manufacturing

Metrics

Downloads

Download data is not yet available.