Relationship between Extended Table Algebra of Infinite Tables and Extended Multiset Table Algebra
DOI:
https://doi.org/10.31649/1997-9266-2020-151-4-67-73Keywords:
relation databases, table algebra of infinite tables, multiset table algebraAbstract
The paper is focused on some theoretical questions of the table databases. The methodological basis of the research is a compositional approach to programming, the core of which is to consider special algebras. Two mathematical formalisms such as extended table algebra of infinite tables and extended multiset table algebra are considered. Their signatures are supplemented by additional operations such as inner and outer joins, semijoin and aggregate operations. Basic definitions referring to these formalisms are given.
This article deals with the topic of the relationship between extended table algebra of infinite tables and extended multiset table algebra. Taking into consideration the fact that the first component of a table of extended table algebra of infinite tables is a set of tuples, and therefore a 1-multiset, the question arises whether the extended table algebra of infinite tables is subalgebra of extended multiset table algebra. This research is devoted to this question.
The first thing that needed to be established is that the set of all tables of extended table algebra of infinite tables is a subset of the set of all tables of extended multiset table algebra. Then, applying the set-theoretic and logical-algebraic methods, it is proved that the extended table algebra of infinite tables is not closed with respect to some signature operations of the extended multiset table algebra. Thus, table algebra of infinite tables does not form subalgebra of multiset table algebra since it is not closed with respect to the union, projection and active complement. So multiset table algebra is not a wider formalism then table algebra of infinite tables.
The obtained results can be applied to the development of query languages for table databases and software with table databases.
References
В. Н. Редько, Ю. Й. Брона, Д. Б. Буй i С. А. Поляков, Реляційні бази даних: табличні алгебри та SQL-подібні мови. Київ, Україна: Видавничий дім «Академперіодика», 2001, 198 с.
Д. Б. Буй i І. М. Глушко, Числення та розширення сигнатур табличних алгебр. Ніжин, Україна: НДУ ім. М. Гоголя, 2016, 151 с.
І. М. Глушко, «Про зв’язок між табличною алгеброю нескінченних таблиць та мультимножинною табличною алгеброю,» in 2018 Proceedings of the 11th International Conference of Programming, Kyiv, Ukraine, 2018, pp. 159-163. [Електронний ресурс]. Режим доступу: http://ceur-ws.org/Vol-2139/159-163.pdf. Дата звернення: Червень 14, 2020.
Д. Б. Буй, і Н. Д. Кахута, «Властивості відношення конфінальності та устрій множини часткових функцій,» Вісник Київського університету. Серія: фіз.-мат. науки, вип. 2, с. 125-135, 2006.
Downloads
-
PDF (Українська)
Downloads: 168
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).