Mathematical Models for Verification of Ergatic Systems of Railway Automation
DOI:
https://doi.org/10.31649/1997-9266-2020-151-4-7-14Keywords:
railway automation, ergatic system, safety of use, calculation and logic circuit, software and hardware, operating modes, exponential distribution lawAbstract
Issues related to the impact of operational, technical and inspection personnel on the safety of the use of ergatic railway automation systems have been addressed. In the conditions of interactive interaction of all types of personnel and equipment mathematical models for calculation of parameters of safety of use of such systems which consider their functioning in a regular and pre-auxiliary mode in various contexts of relations of human and technical factors are developed. It is established and proved that different modes of interactive interaction form a differentiated structure of calculation and logic schemes for assessing the safety of the use of ergatic control systems in railway transport.
The functioning of ergatic control systems in railway transport has significant features associated with the inadmissibility of technological process downtime at infrastructure facilities. In this regard, in such systems there is an auxiliary control mode, in the framework of which blocking dependencies are completely or partially removed, which ensures the technological safety of the use of such systems. In recent years, a piecewise-defined character of mathematical models has been established on the basis of which a numerical safety assessment of the use of such control systems can be performed, which is due to the predominance of technical and human factors in different modes of functioning of such systems. At the same time, the development of forms of interactive interaction between different types of personnel in the active modes of operation of control systems requires a fundamentally new approach to safety assessment – taking into account the influence of differentiated human and integrated technical factors. In this regard, in this study, mathematical models are developed that allow you to take into account the interactive interaction of man and technology in the process of assessing the safety of the use of automated ergatic systems of railway automation. The graphical 3D dependencies built on their basis make it possible to carry out a predictive safety assessment of different systems in the process of their functioning during one working shift of operational, technical and audit personnel. In particular, the formation of mathematical models for calculating safety at different time intervals, which determine the auxiliary and standard operating modes of control systems, provides a differentiation of accounting for various factors when they dominate. An approach based on taking into account the influence of all types of personnel during their interaction with technology is reduced to considering different types of element connections in the calculation and logic schemes of the functional safety of systems, which reduces to different types of formulas in the final piecewise-defined expression for assessing the safety of using such systems.
References
N. Aripov, R. Aliyev, D. Baratov, and E. Ametova, “Features of Construction of Systems of Railway Automatics and Telemechanics at the Organization of High-Speed Traffic in the Republic of Uzbekistan,” Procedia Engineering, vol. 134, pp. 175-180, 2016.
О. Ю. Каменєв, «Проблематика підходів до дослідження безпеки використання ергатичних систем керування на залізничному транспорті. Наука та прогрес транспорту,» Вісник Дніпропетровського національного університету залізничного транспорту ім. акад. В. Лазаряна, вип. 44, с. 7-16, 2013.
Дослідження функційної безпечності та електромагнітної сумісності мікропроцесорної системи електричної централізації станції «Вугільна» на етапі імітаційних та стендових випробувань, звіт з НДР (проміж.). Харків. УкрДАЗТ; керівник А. Б. Бойнік, 2012. Номер держ. реєстр. 0112U006925; інв. номер 0713U007283.
K. Kanso, F. Moller, and A. Setzer, “Automated Verification of Signalling Principles in Railway Interlocking,” Electronic Notes in Theoretical Computer Science Systems, vol. 250, issue 2, рр. 19-31, 2009. https://doi.org/10.1016/j.entcs.2009.08.015.
I. S¸Ener, O. T. Kaymakc¸. Usto Glu ˙I, and G. Cansever, “Specification and formal verification of safety properties in a point automation System,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, pp. 1384-1396, 2016. https://doi.org/10.3906/elk-1311-27.
M. Aanæs Hoang Phuong Thai, Modelling and Verification of Relay Interlocking Systems. Technical University of Denmark Informatics and Mathematical Modelling Denmark. Kongens Lyngby, 2012, pp. 360.
A. Fantechi, T. Lecomte, and A. Romanovsky, “Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification,” in Second International Conference, RSSRail, 2017 Pistoia, Italy, November 14-16, 2017 Proceedings. 2017. Pistoia. Italy. pp. 217. https://doi.org/10.1007/978-3-319-68499-4.
M. Kans, D. Galar, and A. Thaduri, Maintenance 4.0 in Railway Transportation Industry. A data fusion approach of multiple maintenance data sources for real-world reliability modeling, 2016, pp. 317-331. https://doi.org/10.1007/978-3-319-27064-730.
Kameniev O., Lapko A., and Shcheblykina E. “Improvement of technologies for the development of modern rail automation systems,” in Proceedings ІІ International Scientific Conference “Industry 4.0”.Borovets, Bulgaria, 13-16 december 2017. Sofia. Bulgaria: Scientific technical union of mechanical engineering “Industry-4.0”, 2017, vol. 1/1. pp. 107-110.
Rojko A, “Industry 4.0 Concept: Background and Overview,” ECPE European Center for Power Electronics e.V. Nuremberg. Germany, vol. 11, № 5, pp.77-90, 2017.
J. Marais, J. Beugin, and M. Berbineau, “A Survey of GNSS-Based Research and Developments for the European Railway Signaling,” IEEE Transactions on Intelligent Transportation Systems, vol. 10 (18). pp. 2602-2618, 2017.
Fei Yan, Chunhai Gao, Tao Tang, and Yao Zhou, “A Safety Management and Signaling System Integration Method for Communication-Based Train Control System,” Urban Rail Transit, vol 3, issue 2, pp. 90-99, 2017.
V. Markevicius, D. Navikas, A. Idzkowski, D. Andriukaitis, A. Valinevicius, and M. Zilys, “Practical Methods for Vehicle Speed Estimation Using a Microprocessor-Embedded System with AMR Sensors,” Sensors (Basel), vol. 18(7), 2225, pp. 1-12, 2018. https://doi.org/10.3390/s18072225.
А. Ю. Каменев, А. Б. Бойник, и В. Ф. Кустов, « Вопросы взаимной интеграции систем железнодорожной автоматики,» тезисы Междунар. науч.-практ. конференции «Современные информационные и коммуникационные технологии на транспорте, в промышленности и образовании» (14-15 декабря, 2015, г. Днепр.). Днепр: ДНУЖТ им. академіка В. Лазаряна, 2016, с. 15-16.
В. І. Мойсеєнко, «Методи та моделі підвищення безпеки використання систем керування залізничної автоматики шляхом оперативного виявлення порушень.» дис. … д-ра. техн. наук: 05.22.20 - експлуатація та ремонт засобів транспорту, Харків, Українська державна академія залізничного транспорту: УкрДАЗТ, 2011, 356 с.
А. Н. Либерман, Техногенная безопасность: человеческий фактор. Санкт-Петербург: изд-во "ВИС", 2006, 104 с.
В. І. Мойсеєнко, ред. Г. І. Загарія, Мікропроцесорні системи залізничної автоматики. Ч. 1. Централізація стрілок та сигналів. Харків, 1999, 147 c.
В. І. Мойсеєнко, О. М. Огар, і В. В. Гаєвський, «Розвиток залізничних цифрових систем та технологій у контексті інженерії 4.0,» Українські залізниці, вип. 16, с. 9-14, 2019.
J.-G. Hwang, J.-H. Baek, H.-J. Jo, and K.-M. Lee, “Black-box testing tool of railwaysignalling system software with a focus on user convenience,” WIT Transactions on The Built Environment. Korea, vol 135, pp. 99-108, 2014. https://doi.org/10.2495/CR140081.
R. C. Short, “Software Validation for a Railway Signalling System,” IFAC Proceedings, vol. 16, issue 18, pp. 183-193. 1983.
X. Chen, D. Wang, H. Huang, and Z. Wang, “Verification and validation in railway signalling engineering – an application of enterprise systems techniques,” Enterprise Information Systems, vol. 8:4, pp. 490-511, 2014. https://doi.org/10.1080/17517575.2013.835071.
РД РБ БЧ 19.055-99. Безопасность железнодорожной автоматики и телемеханики. Общие положения, порядок и методы проведения испытаний на безопасность. Минск, 1999, 20 с.
РД РБ БЧ 19.057-99. Безопасность железнодорожной автоматики и телемеханики. Общие положения, порядок и методы доказательства безопасности систем и устройств ЖАТ. Минск, 1999, 20 с.
ДСТУ 4178-2003. Комплекси технічних засобів систем керування та регулювання руху поїздів. Функційна безпечність і надійність. Вимоги та методи випробовування. Київ: Держспоживстандарт України, 2003, 32 с.
Методика доказу функціональної безпеки мікроелектронних комплексів систем керування та регулювання рухом поїздів. Затв. наказом «Укрзалізниці» від 17.08.2002 р. № 452-Ц. Київ.: Вид. ПП «Алькор», 2002, 106 с.
“Interactive approaches to the organization off staff interaction with automated control systems,” Proceedings V International Scientific and Technical Conference «Engineering. Technologies. Education. Securty’2017» (Veliko Tarnovo, Bulgaria, 31 May – 03 June 2017). Sofia, Bulgaria: Scientific technical union of mechanical engineering “Industry-4.0”, vol. 2, pp. 221-224, 2017.
Downloads
-
PDF (Українська)
Downloads: 210
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).