The Solution of Continuum Mechanics Plane Problem in the Polar Coordinates Using the Argument Functions of Complex Variable

Authors

  • V. V. Chyhyrynskyi Rudny Industrial Institute
  • O. H. Naumenko Dnipro University of Technology
  • O. V. Ovchynnykov Zaporizhzhia Polytechnic National University

DOI:

https://doi.org/10.31649/1997-9266-2020-150-3-73-80

Keywords:

argument functions method, Cauchy–Riemann conditions, shearing stress intensity, polar coordinates

Abstract

The general approaches to the solution of the plane problem of continuum mechanics, which have been successfully tested in the theory of plasticity, elasticity, dynamic problems of the theory of elasticity, are considered. Based on the argument function method and the method of a complex variable, new approaches to the determination of components of the stress tensor in polar coordinates have been developed. The equilibrium equation systems were used to solve the flat problem. A fundamental substitution is suggested. Use of a trigonometric substitution that connects integral characteristics of a stressed state with components of a stress tensor is demonstrated. Argument functions of basic variables are introduced. When substituting into differential equations, operators are formed, which are characterized by these argument functions and that perform a role of special search regulators. As a result of this, dependencies of existence of solutions in a form of the invariant Cauchy–Riemann conditions and Laplace’s equations are determined. The result obtained is conveniently applied for simplification, allowing linearization of boundary conditions. The solution uses generalized relations in the differential form for specific functions - functions of harmonic type. The trigonometric shape of the shearing stress distribution diagram is actually confirmed by theoretical and experimental data. The solutions that determine not the functions themselves, but the conditions of their existence using Cauchy–Riemann differential conditions are obtained. The solution is a more general case with the feature that is represented not by the product of functions, each of which is determined by one coordinate, but by the product of different functions simultaneously dependent on two coordinates. Comparison of the obtained results with the solutions of other authors shows that the presented solution after simple transformations can be simplified and consider the obtained solution as more generalized.

Author Biographies

V. V. Chyhyrynskyi, Rudny Industrial Institute

Dr. Sc. (Eng.), Professor, Professor of the Chair of Metallurgy and Mining

O. H. Naumenko, Dnipro University of Technology

Senior Lecturer of the Chair of Structural, Theoretical and Applied Mechanics

O. V. Ovchynnykov, Zaporizhzhia Polytechnic National University

Dr. Sc. (Eng.), Professor, Head of the Chair of Welding Technology and Equipment

References

V. Chigurinski, “The study of stressed and deformed metal state under condition of no uniform plastic medium flow,” Metalurgija, Zagreb, vol. 38, br. 1, pp. 31-37, 1999.

V. Chygyryns’kyy, “Analysis of the state of stress of a medium under conditions of inhomogeneous plastic flow,” Metalurgija, Zagreb. vol. 43, br. 2, pp. 87-93, 2004.

В. В. Чигиринский, «Метод решения задач теории пластичности с использованием гармонических функций,» Известия вузов. Черная металлургия, № 5, с. 11-16, 2009.

V. Chigirinsky, and A. Putnoki, “Development of dynamic model of transients in mechanical systems using argument-functions,” Easten-European Journal of Technologies. Applied mechanics, (87), pp. 11-21, 2017. doi: 10.15587/1729-4061.2017.101282.

V. Chigirinsky, and O. Naumenko, “Studying the stressed state of elastic medium using the argument function of a complex variable,” Easten-European Journal of Technologies. Applied mechanics, 5/7 (101), pp. 27-35, 2019. doi: 10.15587/1729-4061.2019.177514.

В. В. Чигиринский, и Е. Г. Науменко, «Некоторые особенности решения плоской задачи механики сплошной среды,» Обработка материалов давлением: Сборник научных трудов, № 1(48), с. 3-11, 2019.

В. С. Смирнов, Теория прокатки. Москва: Металлургия, 1967.

В. В. Чигиринский, В. А. Бренер, и Е. Г. Науменко, «Анализ граничных условий пространственной задачи механики сплошной среды,» Вісник Національного технічного університету «ХПІ». Серія: Інноваційні технології та обладнання обробки матеріалів у машинобудуванні та металургії, № 11 (1336), с. 87-93, 2019.

Н. И. Безухов, Основы теории упругости, пластичности и ползучести, 2-е изд., испр. и доп. Москва: Высш. шк., 1968.

П. Л. Клименко, Контактные напряжения при прокатке. Днепропетровск, Украина: Пороги, 2007.

Н. И. Мусхелишвили, Некоторые основные задачи математической теории упругости. Москва: Наука, 1966.

Б. Н. Жемочкин, Теория упругости. Москва: Гостройиздат, 1957.

Downloads

Abstract views: 158

Published

2020-06-24

How to Cite

[1]
V. V. Chyhyrynskyi, O. H. Naumenko, and O. V. Ovchynnykov, “The Solution of Continuum Mechanics Plane Problem in the Polar Coordinates Using the Argument Functions of Complex Variable”, Вісник ВПІ, no. 3, pp. 73–80, Jun. 2020.

Issue

Section

Mechanical engineering and transport

Metrics

Downloads

Download data is not yet available.