The Solution of Continuum Mechanics Plane Problem in the Polar Coordinates Using the Argument Functions of Complex Variable
DOI:
https://doi.org/10.31649/1997-9266-2020-150-3-73-80Keywords:
argument functions method, Cauchy–Riemann conditions, shearing stress intensity, polar coordinatesAbstract
The general approaches to the solution of the plane problem of continuum mechanics, which have been successfully tested in the theory of plasticity, elasticity, dynamic problems of the theory of elasticity, are considered. Based on the argument function method and the method of a complex variable, new approaches to the determination of components of the stress tensor in polar coordinates have been developed. The equilibrium equation systems were used to solve the flat problem. A fundamental substitution is suggested. Use of a trigonometric substitution that connects integral characteristics of a stressed state with components of a stress tensor is demonstrated. Argument functions of basic variables are introduced. When substituting into differential equations, operators are formed, which are characterized by these argument functions and that perform a role of special search regulators. As a result of this, dependencies of existence of solutions in a form of the invariant Cauchy–Riemann conditions and Laplace’s equations are determined. The result obtained is conveniently applied for simplification, allowing linearization of boundary conditions. The solution uses generalized relations in the differential form for specific functions - functions of harmonic type. The trigonometric shape of the shearing stress distribution diagram is actually confirmed by theoretical and experimental data. The solutions that determine not the functions themselves, but the conditions of their existence using Cauchy–Riemann differential conditions are obtained. The solution is a more general case with the feature that is represented not by the product of functions, each of which is determined by one coordinate, but by the product of different functions simultaneously dependent on two coordinates. Comparison of the obtained results with the solutions of other authors shows that the presented solution after simple transformations can be simplified and consider the obtained solution as more generalized.
References
V. Chigurinski, “The study of stressed and deformed metal state under condition of no uniform plastic medium flow,” Metalurgija, Zagreb, vol. 38, br. 1, pp. 31-37, 1999.
V. Chygyryns’kyy, “Analysis of the state of stress of a medium under conditions of inhomogeneous plastic flow,” Metalurgija, Zagreb. vol. 43, br. 2, pp. 87-93, 2004.
В. В. Чигиринский, «Метод решения задач теории пластичности с использованием гармонических функций,» Известия вузов. Черная металлургия, № 5, с. 11-16, 2009.
V. Chigirinsky, and A. Putnoki, “Development of dynamic model of transients in mechanical systems using argument-functions,” Easten-European Journal of Technologies. Applied mechanics, (87), pp. 11-21, 2017. doi: 10.15587/1729-4061.2017.101282.
V. Chigirinsky, and O. Naumenko, “Studying the stressed state of elastic medium using the argument function of a complex variable,” Easten-European Journal of Technologies. Applied mechanics, 5/7 (101), pp. 27-35, 2019. doi: 10.15587/1729-4061.2019.177514.
В. В. Чигиринский, и Е. Г. Науменко, «Некоторые особенности решения плоской задачи механики сплошной среды,» Обработка материалов давлением: Сборник научных трудов, № 1(48), с. 3-11, 2019.
В. С. Смирнов, Теория прокатки. Москва: Металлургия, 1967.
В. В. Чигиринский, В. А. Бренер, и Е. Г. Науменко, «Анализ граничных условий пространственной задачи механики сплошной среды,» Вісник Національного технічного університету «ХПІ». Серія: Інноваційні технології та обладнання обробки матеріалів у машинобудуванні та металургії, № 11 (1336), с. 87-93, 2019.
Н. И. Безухов, Основы теории упругости, пластичности и ползучести, 2-е изд., испр. и доп. Москва: Высш. шк., 1968.
П. Л. Клименко, Контактные напряжения при прокатке. Днепропетровск, Украина: Пороги, 2007.
Н. И. Мусхелишвили, Некоторые основные задачи математической теории упругости. Москва: Наука, 1966.
Б. Н. Жемочкин, Теория упругости. Москва: Гостройиздат, 1957.
Downloads
-
PDF (Українська)
Downloads: 168
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).