The Law of Transforming the Coefficients of a Trigonometric Fourier Series under the Mapping of a Continuous Function into a Discontinuous Function of the First Kind
Keywords:
spectral analysis, Hilbert space, orthogonal basis, Fourier series, Fourier coefficients, continuous and discontinuous function, trigonometric series, electrical engineering theoryAbstract
In this paper, we describe some properties of an infinite-dimensional linear Hilbert space of 2π-periodic functions with a scalar product defined in it. This space is constructed over a set of real numbers. In particular, the law of transformation of the coefficients of the trigonometric Fourier series is defined in the case of transformation of a continuous function on the period into a discontinuous function of the first kind. In this regard, strictly justified and obtained expressions that in analytical form disclose the said mathematical law. A successful solution of the problem became possible as a result of the author introducing an auxiliary system basis of orthogonal functions. This made it possible to obtain an intermediate expansion of each of the original Fourier coefficients of a continuous periodic function, and with the subsequent rearrangement of the terms it was possible to form the decomposition of a discontinuous periodic function and determine the Fourier coefficients of such decomposition. This approach has revealed the compositional nature of the required mathematical law of transformation. This mathematical problem appears and becomes relevant during the spectral analysis of continual physical and technical dynamic systems in the case of discretization of their motion in space and time. As an example of such systems, electrical or radio engineering systems can be called. The solution of the problem makes it possible to supplement the spectral (frequency) method of analyzing electrical circuits at the present time with missing mathematical models that are able to directly and without resorting to the integration operation to identify and evaluate the distribution of the spectral components of the trigonometric Fourier series in the case of discretization of the continuous motion of dynamical systems. The above, for example, can be attributed to devices and systems power semiconductor electronics in which the generation, transportation and conversion of electrical (electromagnetic) energy is carried out by the method of discretizing the energy processes that are continuous in their physical nature. Today, this approach has become a paradigm in the development of modern power electronics.
References
В. І. Сенько, М. В. Панасенко, Є. В. Сенько, М. М. Юрченко, Л. І. Сенько, та В. В. Ясінський, Електроніка і мікросхемотехніка. Силова електроніка, том 4, книга 1. Київ: Каравела, 2013, 640 с.
Г. А. Месяц, Импульсная энергетика и электроника. Москва: Наука, 2004, 704 с.
Аndrea Goldsmith, Wireless Communications. Cambridge University Press, 2005, 674 p.
А. А. Харкевич, Спектры и анализ. Москва: Кн. дом «ЛИБРОКОМ», 2009, 240 с.
Ю. О. Карпов, Ю. Г. Ведміцький, В. В. Кухарчук, та С. Ш. Кацив, Теоретичні основи електротехніки. Перехідні процеси в лінійних колах. Синтез лінійних кіл. Електричні та магнітні нелінійні кола. Херсон, Україна: ОЛДІ-ПЛЮС, 2013, 456 с.
Ю. Г. Ведміцький, В. В. Кухарчук, Контроль моменту інерції на основі удосконаленої теорії електродинамічних аналогій. Вінниця, Україна: ВНТУ, 2015, 196 с.
Ю. Г. Ведміцький, «Біноміальні перетворення в формуванні узагальненої задачі Коші,» Вісник Вінницького політехнічного інституту, № 3(120), с. 91-95, 2015.
Ю. Г. Ведміцький, «Узагальнене електричне коло і фізичне явище гіпервалентної взаємодії,» Вісник Інженерної академії України, вип. 4, с. 207-213, 2016.
J. Awrejcewicz, D. Lewandowski, and P. Olejnik, Dynamics of Mechatronics Systems: Modeling, Simulation, Control, Optimization and Experimental Investigations. World Scientific Publishing Co. Pte. Ltd, 2017, 351 p.
Downloads
-
PDF (Українська)
Downloads: 107
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).