Analysis of Asymmetric Operating Modes in Three-Phase Network with the Use of Exchange Power

Authors

  • S. P. Denysiuk National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
  • D. S. Horenko National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
  • P. V. Sokolovskyi National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Keywords:

Smart Grid, operating currents, cross flows of energy, asymmetrical conditions, reactive-power, exchange processes

Abstract

The work analyzes the operation modes of renewable energy sources as part of autonomous power supply systems. The possible variants of distortion in the system and the influence of these distortions on three-phase power generators are presented. The problems of electromagnetic compatibility of renewable sources, in particular, wind generators, and autonomous systems (Smart Grid) are considered. A simplified model of a three-phase low-power generator and its exposure with a single-phase model is presented.

The analysis of asymmetric modes in three-phase autonomous power supply systems is carried out. A mathematical simulation of the operation of a simplified single-phase power supply system with nonsynchronous sinusoidal generators has shown that the quadratic residual of the current values of currents makes it possible to detect the mutual exchange between the generators, but does not provide an opportunity to estimate energy flows even in such a simple model of two generators feeding a single load. The expediency of using the integral indicator of exchange capacity for both single-phase systems and three-phase systems is proved. The effect on the three-phase autonomous power supply system of the source of interference of a variable frequency has been assessed.

Exchange processes are analyzed through the common section "Generator - Load", after complete equivalence of the circuit. It is indicated that such an approach does not allow to fully appreciate the energy flows in the three-phase system as a whole and in the generator in particular, but takes into account only the energy generating a three-phase generator and consumes three-phase loads. The analysis of the model is presented and the necessity to detail the exchange processes for each generator and load and between phases is argued.

The balance of energy flows along the intervals of energy invariant states is given, which makes it possible to use this approach not only for a specific model but for any three-phase system. Also presented is a technique that will allow evaluating the energy processes of a group of three-phase generators that can operate in various incompatible modes.

Author Biographies

S. P. Denysiuk, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Dr. Sc. (Eng.), Professor, Director of the Institute of Energy Saving and Energy Management

D. S. Horenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Post-Graduate Student of the Chair of Power Supply

P. V. Sokolovskyi, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Post-Graduate Student of the Chair of Power Supply

References

[1] С. Ф. Артюх, К. В. Махотило, и К. В. Сапельников, «Предпосылки к созданию энергогенерирующих узлов гибридного типа на базе возобновляемых источников энергии,» Наукові праці ДонНТУ, № 1(17). с. 13-17, 2015.
[2] Smart Grids Strategic Research Agenda (SRA) for RD&D1 needs towards 2035 “SmartGrids SRA 2035”. — [Online]. Available: www.oxfordjournals.org .
[3] Е. Brown, and S. Busche «State of the States 2008: Renewable Energy Development and the Role of Policy,» Technical Report NREL/TP, с. 16-35, 2008.
[4] В. Я. Жуйков, та С. П. Денисюк, «Енергетичні процеси в електричних колах з ключовими елементами,» Київ, Україна: НТУУ «КПІ», 2010, 264 с.
[5] И. В. Жежеленко и др., Электромагнитная совместимость потребителей. М., Россия: Машиностроение, 2012, 351 с.
[6] О. В. Кириленко, С. П. Денисюк, та О. Б. Рибіна, «Особливості забезпечення електромагнітної сумісності в електричних мережах України,» Пр. Ін-ту електродинаміки НАН України: Зб. наук. праць, Київ, ІЕД НАНУ, № 1(16), с. 27-30, 2007.
[7] B. Journals, «EMC and Smart Grid applications,» IEEE Electromagnetic Compatibility Magazine, 2010.
[8] P. M. D. Oliveira, P. M. Jesus., E. D. Castronuovo, and M. T. Leao, «Reactive Power Responseof Wind Generators Underan Incremental Network — Loss Allocation Approach,» IEEE Transactionson Energy Conversion, no. 2 (23), pp. 612-621, 2008.
[9] S. P. Verma, and P. Kumar, «Smart Grid, Its Power Quality and Electromagnetic Compatibility,» Islam, MIT International Journal of Electrical and Instrumentation Engineering, no. 1, pp. 55-64, 2012.
[10] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, New York: Wiley, 2007. 380 p.
[11] S. Leszek, and K. Czarnecki, «Instantaneous Reactive Power p-q Theory and Power Properties of Three,» IEEE Transactions on Power Delivery, no. 21, pp. 362-367, 2006.
[12] М. В. Загирняк, и Д. И. Родькин, «Анализ процессов преобразования энергии в электромеханических системах,» Електромеханічні і енергозберігаючі системи, № 3(19), с. 30-36, 2012.
[13] М. В. Загирняк, Д. И. Родькин, А. П. Черный, и Т. В. Коренькова, «Направления развития теории мгновенной мощности и ее применение в задачах электромеханики,» Міжнар. наук.-техн. конф. «Проблеми автоматизованого електроприводу. Теорія і практика», 2011, с. 347-354.
[14] C. П. Денисюк, «Аналіз взаємного впливу елементів системи електроживлення з перетворювачами,» Пр. Ін-ту електродинаміки НАН України: Зб. наук. праць, № 2(17), с. 13-17, 2007.
[15] Н. А. Костин, и А. В. Петров, «Методы определения составляющих погной мощности в системах электрической тяги,» Технічна електродинаміка. Тем. вип. «ПСЕ-2011», № 3, с. 53-59, 2011.
[16] Г. Г Жемеров, Д. С. Крылов, и Д. В. Тугай, «Система составляющих полной мощности и энергетических коэффициентов на основе p-q-r теории мощности» Техн. електродинаміка. Тем. випуск «Проблеми сучасної електротехніки», № 1, с. 69-74, 2004.
[17] L. Xu, and Ph. Cartwright, «Direct Activeand Reactive Power Control of DFIG for Wind Energy Generation,» IEEE Trans. Energy Conversion, no. 3(21), с. 750-758, September. 2006.
[18] IEEE Standard, «Definition for the measurement of Electric Power Quantities under sinusoidal, nousinusoidal, balanced or unbalanced conditions,» (IEEE std. 1459ТМ – 2010), IEEE Power and Energy Society, New York, 2010.
[19] J. L. Willems, J. A. Ghijselen, and A. E. Emanuel, «The Apparent Power Conceptand the IEEE standard 1459,» IEEE Trans. on Power Delivery, no. 2(20), April 2005.
[20] Г. Г. Жемеров, и О. В. Ильина, «Теория мощности Фризе и современные теории мощности,» Електротехніка і Електромеханіка, № 6, с. 63-65, 2007.
[21] С. П. Денисюк, та Д. С. Горенко, «Обмінні процеси в трифазних автономних системах електроживлення,» Праці Інституту електродинаміки НАН України, № 45, с. 9-15, 2016.
[22] Л. А. Бессонов, Теоретические основы электротехники: Электрические цепи. Москва, Россия: Высш. школа, 1978, 528 с.

Downloads

Abstract views: 181

Published

2018-02-28

How to Cite

[1]
S. P. Denysiuk, D. S. Horenko, and P. V. Sokolovskyi, “Analysis of Asymmetric Operating Modes in Three-Phase Network with the Use of Exchange Power”, Вісник ВПІ, no. 1, pp. 45–52, Feb. 2018.

Issue

Section

Energy generation and electrical engineering

Metrics

Downloads

Download data is not yet available.