Neural network method for predicting accidents due to formation of ice on power lines overhead
Keywords:
forecasting glaze load, neural network, meteopost, overhead power lineAbstract
The problem of prevention of faults caused by overhead power line glazing is considered. With this purpose, in the most fault-prone areas, automatic monitoring posts for glaze loads and meteorological parameters are installed the data of which are used to predict glazing. A neural network method for such prediction is proposed and has been tested on real data.References
1. Crocombette C. The weather impact on the transmission of electricity in France / C. Crocombette // Proc. 8th European conference on Application of Meteorology. — Madrid, Spain, 2007. — Vol. 4. — 670 p.
2. Makkonen L. Fifty years of progress in modeling the accumulation of atmospheric ice on power network equipment /
L. Makkonen, E. Lozowski // Proc. 11th International Workshop on Atmospheric Icing of Structures. — Montreal, Canada, 2005. — P. 55—62.
3. Estimation of transmission line icing at different sites using a neural network / P. Mc Comber, J. Druez, J. Lafontaine, A. Paradis, J. N. Laflamme // Proc. 9th International Offshore and Polar Engineering Conference. — Brest, France, 1999. —
Vol. II. — P. 599–606.
4. Jones K. F. A simple model for freezing rain ice loads / K. F. Jones // Atmospheric Research. — 1998. — Vol. 46. —
P. 87—97.
5. Makkonen L. Modeling power line icing in freezing precipitation / L. Makkonen // Atmospheric Research. — 1998. — Vol. 43. — P. 131—142.
6. Попов С. В. Еволюційна нейро-фаззі мережа на базі гібридних нейроподібних елементів / С. В. Попов, К.А. Шкуро // 17 міжнародна конференція з автоматичного управління «Автоматика—2010»: тези доповідей. Том 2. — Харків, 2010. — С. 193—194.
7. Попов С. В. Спеціалізована архітектура штучних нейронних мереж на базі гібридних нейроподібних елементів /
С. В. Попов // Збірник наукових праць Національного гірничого університету. — 2009. — Т. 2, № 33. — С. 76—82.
8. Haykin S. Neural Networks. A Comprehensive Foundation / S. Haykin. — Upper Saddle River: Prentice Hall, 1999. — 842 p.
9. Jain L. C. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms: Industrial Applications / L. C. Jain,
N. M. Martin. — New York : CRC Press, 1998. — 368 p.
10. Schaffer J. D. Combinations of Genetic Algorithms and Neural Networks : A Survey of the State of the Art /
J. D. Schaffer, D. Whitley, L. J. Eshelman // Proc. Int. Workshop Combinations of Genetic Algorithms and Neural Networks. — Baltimore, June 6, 1992. — P. 1—37.
2. Makkonen L. Fifty years of progress in modeling the accumulation of atmospheric ice on power network equipment /
L. Makkonen, E. Lozowski // Proc. 11th International Workshop on Atmospheric Icing of Structures. — Montreal, Canada, 2005. — P. 55—62.
3. Estimation of transmission line icing at different sites using a neural network / P. Mc Comber, J. Druez, J. Lafontaine, A. Paradis, J. N. Laflamme // Proc. 9th International Offshore and Polar Engineering Conference. — Brest, France, 1999. —
Vol. II. — P. 599–606.
4. Jones K. F. A simple model for freezing rain ice loads / K. F. Jones // Atmospheric Research. — 1998. — Vol. 46. —
P. 87—97.
5. Makkonen L. Modeling power line icing in freezing precipitation / L. Makkonen // Atmospheric Research. — 1998. — Vol. 43. — P. 131—142.
6. Попов С. В. Еволюційна нейро-фаззі мережа на базі гібридних нейроподібних елементів / С. В. Попов, К.А. Шкуро // 17 міжнародна конференція з автоматичного управління «Автоматика—2010»: тези доповідей. Том 2. — Харків, 2010. — С. 193—194.
7. Попов С. В. Спеціалізована архітектура штучних нейронних мереж на базі гібридних нейроподібних елементів /
С. В. Попов // Збірник наукових праць Національного гірничого університету. — 2009. — Т. 2, № 33. — С. 76—82.
8. Haykin S. Neural Networks. A Comprehensive Foundation / S. Haykin. — Upper Saddle River: Prentice Hall, 1999. — 842 p.
9. Jain L. C. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms: Industrial Applications / L. C. Jain,
N. M. Martin. — New York : CRC Press, 1998. — 368 p.
10. Schaffer J. D. Combinations of Genetic Algorithms and Neural Networks : A Survey of the State of the Art /
J. D. Schaffer, D. Whitley, L. J. Eshelman // Proc. Int. Workshop Combinations of Genetic Algorithms and Neural Networks. — Baltimore, June 6, 1992. — P. 1—37.
Downloads
-
PDF (Українська)
Downloads: 77
Abstract views: 103
Published
2010-11-12
How to Cite
[1]
S. V. Popov, N. M. Cheremysyn, O. V. Parkhomenko, and K. A. Shkuro, “Neural network method for predicting accidents due to formation of ice on power lines overhead”, Вісник ВПІ, no. 1, pp. 161–163, Nov. 2010.
Issue
Section
Energy generation and electrical engineering
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).