Semicertain relaxation in the design of the difficult systems
Abstract
The sensor network localization problem is solved with the help of semidefinite relaxation and generalized simplex method. Performing numerical experiments show the efficiency of proposed method.References
1. Overton M. Semidefinite Programming / M. Overton, H. Wolkowicz. — Mathematical Programming. — 1997. — No. 77.
— Р. 105—109.
2. Helmberg C. Semidefinite Programming For Combinatorial Optimization / C. Helmberg. — Berlin, 2000. — 150 p.
3. Freund R. M. Introduction to Semidefinite Programming / R. M. Freund. — Massachusett : Massachusetts Institute of
Technology, 2004. — 54 p.
4. Косолап А. І. Використання напіввизначеної оптимізації для моделювання складних систем / А. І. Косолап,
А. С. Перетятько // Математичні машини і системи. — 2012. — № 1. — С. 174—179.
5. Sum of Squares Method for Sensor Network Localization / Nie Jiawang. — University of Minnesota — 2006.
6. Spaseloc: An Adaptive Subproblem Algorithm For Scalable Wireless Sensor Network Localization / [W. Michael Carter,
H. Jin Holly, M. A. Saunders, Y. Ye]. — Siam J. Optim. — 2006. — Vol. 17, No. 4. — Р. 1102—1128.
7. Anderson B. D. O. Wireless sensor network localization techniques / B. D. O. Anderson, G. Mao, and B. Fidan // Computer
Networks, 2007. — No. 51. — Р. 2529—2553.
8. Biswas P. Semidefinite programming for ad hoc wireless sensor network localization / P. Biswas and Y. Ye // In Proceedings
of the 3-rd International Symposium on Information Processing in Sensor Networks, 2004. — Berkeley, CA, USA. —
P. 46—54.
9. Andrea Cassioli. Solving the Sensor Network Localization Problem using an Heuristic Multistage Approach / Andrea Cassioli.
— 2009.
10. Krislock N. Explicit Sensor Network Localization using Semidefinite Representations and Facial Reductions
/ N. Krislock, F. Wolkowicz. — Waterloo : University of Waterloo, 2010. — 35 p.
11. Man-Cho A. Theory of Semidefinite Programming for Sensor Network Localization / A. Man-Cho, Y. Ye. — ACMSIAM
Symposium on Descrete Algorithms, 2004. — 16 p.
12. SFSDP : a Sparse Version of Full Semidefinite Programming Relaxation for Sensor Network Localization Problems / [S.
Kim, M. Kojima, H. Waki, M. Yamashita]. — 2009. — 19 p.
13. Yamashita M. A High-Perfomance Software Package for Semidefinite Programs: SDPA 7 / M. Yamashita. — 2010. —
26 p.
14. Roumili H. Infeasible Interior Point Method for Semidefinite Programs / H. Roumili, A. Keraghel, A. Yassine // Applied
Mathematical Sciences. — 2007. — 10 p.
15. Косолап А. И. Обобщение симплекс-метода для решения задач полуопределенной оптимизации / А. И. Косолап //
Математичне та комп’ютерне моделювання. — 2010. — C. 99—106.
— Р. 105—109.
2. Helmberg C. Semidefinite Programming For Combinatorial Optimization / C. Helmberg. — Berlin, 2000. — 150 p.
3. Freund R. M. Introduction to Semidefinite Programming / R. M. Freund. — Massachusett : Massachusetts Institute of
Technology, 2004. — 54 p.
4. Косолап А. І. Використання напіввизначеної оптимізації для моделювання складних систем / А. І. Косолап,
А. С. Перетятько // Математичні машини і системи. — 2012. — № 1. — С. 174—179.
5. Sum of Squares Method for Sensor Network Localization / Nie Jiawang. — University of Minnesota — 2006.
6. Spaseloc: An Adaptive Subproblem Algorithm For Scalable Wireless Sensor Network Localization / [W. Michael Carter,
H. Jin Holly, M. A. Saunders, Y. Ye]. — Siam J. Optim. — 2006. — Vol. 17, No. 4. — Р. 1102—1128.
7. Anderson B. D. O. Wireless sensor network localization techniques / B. D. O. Anderson, G. Mao, and B. Fidan // Computer
Networks, 2007. — No. 51. — Р. 2529—2553.
8. Biswas P. Semidefinite programming for ad hoc wireless sensor network localization / P. Biswas and Y. Ye // In Proceedings
of the 3-rd International Symposium on Information Processing in Sensor Networks, 2004. — Berkeley, CA, USA. —
P. 46—54.
9. Andrea Cassioli. Solving the Sensor Network Localization Problem using an Heuristic Multistage Approach / Andrea Cassioli.
— 2009.
10. Krislock N. Explicit Sensor Network Localization using Semidefinite Representations and Facial Reductions
/ N. Krislock, F. Wolkowicz. — Waterloo : University of Waterloo, 2010. — 35 p.
11. Man-Cho A. Theory of Semidefinite Programming for Sensor Network Localization / A. Man-Cho, Y. Ye. — ACMSIAM
Symposium on Descrete Algorithms, 2004. — 16 p.
12. SFSDP : a Sparse Version of Full Semidefinite Programming Relaxation for Sensor Network Localization Problems / [S.
Kim, M. Kojima, H. Waki, M. Yamashita]. — 2009. — 19 p.
13. Yamashita M. A High-Perfomance Software Package for Semidefinite Programs: SDPA 7 / M. Yamashita. — 2010. —
26 p.
14. Roumili H. Infeasible Interior Point Method for Semidefinite Programs / H. Roumili, A. Keraghel, A. Yassine // Applied
Mathematical Sciences. — 2007. — 10 p.
15. Косолап А. И. Обобщение симплекс-метода для решения задач полуопределенной оптимизации / А. И. Косолап //
Математичне та комп’ютерне моделювання. — 2010. — C. 99—106.
Downloads
-
PDF (Українська)
Downloads: 33
Abstract views: 99
How to Cite
[1]
A. I. Kosolap and A. S. Peretiatko, “Semicertain relaxation in the design of the difficult systems”, Вісник ВПІ, no. 2, pp. 92–95, Apr. 2013.
Issue
Section
Information technologies and computer sciences
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).