Deblurring filter design using second fundamental form of image surface

Authors

  • R. N. Kvietnyi Vinnytsia National Technical University
  • O. Yu. Sofyna Vinnytsia National Technical University
  • Yu. A. Buniak IVP Ltd. "InnoVinn"

Abstract

High resolution deblurring by one step convolution of initial image with estimated inverse point spread function (IPSF) is offered. The IPSF is found basing on geometric properties of image surface characteristic in the manner of the second fundamental form (SFF). It was shown that the SFF can be used for blur elimination by simple subtraction of the SFF value from image signal. To reduce the influence of fluctuations on the form of the blur function the regularization was applied, which minimizes the func-tional area in the form of a curved surface.

Author Biographies

R. N. Kvietnyi, Vinnytsia National Technical University

завідувач кафедри, Кафедра автоматики та інформаційно-вимірювальної техніки

O. Yu. Sofyna, Vinnytsia National Technical University

старший викладач, Кафедра автоматики та інформаційно-вимірювальної техніки

Yu. A. Buniak, IVP Ltd. "InnoVinn"

провідний спеціаліст

References

1. Kundur D. Blind image deconvolution / D. Kundur, D. Hatzinakos // IEEE Signal Proc. Mag. — 1996. — № 5. — Р. 43—64.
2. Jiang M. Development of blind image deconvolution and its applications / M. Jiang, G. Wang // J. of X-Ray Sc. and Tech.
— 2003. — № 11. — P. 13—19.
3. Li X. Nonlinear diffusion with multiple edginess thresholds / X. Li T. Chen // Pattern Recognition. — 1994. — № 27. —
P. 1029—1037.
4. Gilboa G. Image Enhancement and Denoising by Complex Diffusion Processes / G. Gilboa, N. Sochen, Y. Zeevi // IEEE
Trans. on Pattern Analysis and Machine Intelligence. — 2004. — № 26. — P. 1020—1036.
5. Osher S. J. Feature-Oriented Image Enhancement Using Shock Filters / S. J. Osher, L. I. Rudin // SIAM J. Numerical
Analysis. — 1990. — № 27. — P. 919—940.
6. Kimmel R. Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images /
R. Kimmel, R. Malladi, N. Sochen // Int. J. of Computer Vision. — 2000. — № 39(2). — P. 111—129.
7. Chambolle A. An algorithm for total variation minimization and application / A. Chambolle // J. of Math. Imaging and Vis.
— 2004. — № 20. — P. 89—97.
8. Lysaker M. Noise removal using smoothed normal’s and surface fitting / M. Lysaker, S. Osher, X.-C. Tai // IEEE Trans.
Image Process. — 2004. — № 13. — P. 1345—1357.
9. Tschumperle D. Vector-valued image regularization with PDE's: a common framework for different applications /
D. Tschumperle, R. Deriche // IEEE Trans. Patt. Anal. and Machine Intel. — 2005. — № 27(4). — P. 506—517.
10. Molina R. Blind deconvolution using a variational approach to parameter image and blur estimation / R. Molina,
J. Mateos, A. Katsaggelos // IEEE Trans. Image Process. — 2006. — № 15. — P. 3715—3727.
11. Bar L. Color image deblurring with Impulsive Noise / L. Bar, A. Brook, N. Sochen // IEEE Trans. Image Proc. — 2007.
— № 16. — P. 1101—1111.
12. Zhu W. Image denoising using mean curvature of image surface / W. Zhu, T. Chan // SIAM J. Imaging Sci. — 2012. —
№ 5(1). — P. 1—32.

Downloads

Abstract views: 100

How to Cite

[1]
R. N. Kvietnyi, O. Y. Sofyna, and Y. A. Buniak, “Deblurring filter design using second fundamental form of image surface”, Вісник ВПІ, no. 4, pp. 84–88, Aug. 2013.

Issue

Section

Information technologies and computer sciences

Metrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)