Deblurring filter design using second fundamental form of image surface
Abstract
High resolution deblurring by one step convolution of initial image with estimated inverse point spread function (IPSF) is offered. The IPSF is found basing on geometric properties of image surface characteristic in the manner of the second fundamental form (SFF). It was shown that the SFF can be used for blur elimination by simple subtraction of the SFF value from image signal. To reduce the influence of fluctuations on the form of the blur function the regularization was applied, which minimizes the func-tional area in the form of a curved surface.References
1. Kundur D. Blind image deconvolution / D. Kundur, D. Hatzinakos // IEEE Signal Proc. Mag. — 1996. — № 5. — Р. 43—64.
2. Jiang M. Development of blind image deconvolution and its applications / M. Jiang, G. Wang // J. of X-Ray Sc. and Tech.
— 2003. — № 11. — P. 13—19.
3. Li X. Nonlinear diffusion with multiple edginess thresholds / X. Li T. Chen // Pattern Recognition. — 1994. — № 27. —
P. 1029—1037.
4. Gilboa G. Image Enhancement and Denoising by Complex Diffusion Processes / G. Gilboa, N. Sochen, Y. Zeevi // IEEE
Trans. on Pattern Analysis and Machine Intelligence. — 2004. — № 26. — P. 1020—1036.
5. Osher S. J. Feature-Oriented Image Enhancement Using Shock Filters / S. J. Osher, L. I. Rudin // SIAM J. Numerical
Analysis. — 1990. — № 27. — P. 919—940.
6. Kimmel R. Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images /
R. Kimmel, R. Malladi, N. Sochen // Int. J. of Computer Vision. — 2000. — № 39(2). — P. 111—129.
7. Chambolle A. An algorithm for total variation minimization and application / A. Chambolle // J. of Math. Imaging and Vis.
— 2004. — № 20. — P. 89—97.
8. Lysaker M. Noise removal using smoothed normal’s and surface fitting / M. Lysaker, S. Osher, X.-C. Tai // IEEE Trans.
Image Process. — 2004. — № 13. — P. 1345—1357.
9. Tschumperle D. Vector-valued image regularization with PDE's: a common framework for different applications /
D. Tschumperle, R. Deriche // IEEE Trans. Patt. Anal. and Machine Intel. — 2005. — № 27(4). — P. 506—517.
10. Molina R. Blind deconvolution using a variational approach to parameter image and blur estimation / R. Molina,
J. Mateos, A. Katsaggelos // IEEE Trans. Image Process. — 2006. — № 15. — P. 3715—3727.
11. Bar L. Color image deblurring with Impulsive Noise / L. Bar, A. Brook, N. Sochen // IEEE Trans. Image Proc. — 2007.
— № 16. — P. 1101—1111.
12. Zhu W. Image denoising using mean curvature of image surface / W. Zhu, T. Chan // SIAM J. Imaging Sci. — 2012. —
№ 5(1). — P. 1—32.
2. Jiang M. Development of blind image deconvolution and its applications / M. Jiang, G. Wang // J. of X-Ray Sc. and Tech.
— 2003. — № 11. — P. 13—19.
3. Li X. Nonlinear diffusion with multiple edginess thresholds / X. Li T. Chen // Pattern Recognition. — 1994. — № 27. —
P. 1029—1037.
4. Gilboa G. Image Enhancement and Denoising by Complex Diffusion Processes / G. Gilboa, N. Sochen, Y. Zeevi // IEEE
Trans. on Pattern Analysis and Machine Intelligence. — 2004. — № 26. — P. 1020—1036.
5. Osher S. J. Feature-Oriented Image Enhancement Using Shock Filters / S. J. Osher, L. I. Rudin // SIAM J. Numerical
Analysis. — 1990. — № 27. — P. 919—940.
6. Kimmel R. Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images /
R. Kimmel, R. Malladi, N. Sochen // Int. J. of Computer Vision. — 2000. — № 39(2). — P. 111—129.
7. Chambolle A. An algorithm for total variation minimization and application / A. Chambolle // J. of Math. Imaging and Vis.
— 2004. — № 20. — P. 89—97.
8. Lysaker M. Noise removal using smoothed normal’s and surface fitting / M. Lysaker, S. Osher, X.-C. Tai // IEEE Trans.
Image Process. — 2004. — № 13. — P. 1345—1357.
9. Tschumperle D. Vector-valued image regularization with PDE's: a common framework for different applications /
D. Tschumperle, R. Deriche // IEEE Trans. Patt. Anal. and Machine Intel. — 2005. — № 27(4). — P. 506—517.
10. Molina R. Blind deconvolution using a variational approach to parameter image and blur estimation / R. Molina,
J. Mateos, A. Katsaggelos // IEEE Trans. Image Process. — 2006. — № 15. — P. 3715—3727.
11. Bar L. Color image deblurring with Impulsive Noise / L. Bar, A. Brook, N. Sochen // IEEE Trans. Image Proc. — 2007.
— № 16. — P. 1101—1111.
12. Zhu W. Image denoising using mean curvature of image surface / W. Zhu, T. Chan // SIAM J. Imaging Sci. — 2012. —
№ 5(1). — P. 1—32.
Downloads
-
PDF (Українська)
Downloads: 50
Abstract views: 100
How to Cite
[1]
R. N. Kvietnyi, O. Y. Sofyna, and Y. A. Buniak, “Deblurring filter design using second fundamental form of image surface”, Вісник ВПІ, no. 4, pp. 84–88, Aug. 2013.
Issue
Section
Information technologies and computer sciences
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).