ОСОБЛИВОСТІ МОДЕЛЕЙ НЕЙРОМЕРЕЖНОГО КЛАСИФІКАТОРА ДЛЯ РОЗПІЗНАВАННЯ ОБ’ЄКТІВ
DOI:
https://doi.org/10.31649/1997-9266-2022-163-4-56-63Ключові слова:
нейромережевий класифікатор, ранжування, механізм конкуренції, дискримінантна функціяАнотація
У підсистемах підтримки прийняття рішення для розпізнавання об’єктів особливе значення має виявлення найвірогіднішого результату серед можливих за певним набором ознак. З цією метою доречним є присвоєння конкретних рангів кожному з результуючих сигналів в процесі класифікації. Розглянуто дві моделі нейромережного класифікатора, причому результатом класифікації в удосконаленій моделі є формування рангів всім визначеним класам із застосуванням нового підходу. Отже, функціональні можливості такого нейромережного класифікатора в цьому випадку отримали розширення за рахунок ранжування класів. Удосконалений нейромережний класифікатор має п’ять шарів — вхідний, три приховані і вихідний шари. У першому прихованому шарі формуються відповідні дискримінанті функції, у другому прихованому шарі реалізується механізм конкуренції WTA (переможець отримує все). Вихідний шар, в якому формуються ранги класів об’єктів, будується на лічильниках, в яких поступово підраховуються ранги класів. Третій прихований шар виконує роль маскувального шару, беручи участь у формуванні рангів. Отже, введення двох шарів (маскувального та вихідного у вигляді лічильників) дозволяє визначити ранги вхідного об’єкта стосовно його належності до конкретних класів. У статті наведено загальні структури розглянутих нейромережних класифікаторів, для порівняння показано топологічні структури обох моделей таких класифікаторів, а також розглянуто функціональну схему елементів доданих шарів. Наведено особливості функціонування запропонованого класифікатора, представлено його структурно-функціональну характеристику у вигляді таблиці. Крім того, схематично показано особливості процесу реалізації механізму конкуренції нейронів у конкурентному шарі класифікатора.
Посилання
Rangaraj M. Rangayyan, Biomedical Signal Analysis. Second ed. Wiley-IEEE Press, 2015. [Електронний ресурс]. Режим доступу: https://ieeexplore.ieee.org/book/5264168 .
И. Е. Шепелев, и Б. М. Владимирский, «Построение нейросетевого классификатора для интерфейса “мозг–компьютер”,» Нейрокомпьютеры: разработка, применение, № 9, 2010.
Т. Б. Мартынюк, А. Г. Буда, В. В. Хомюк, А. В. Кожемяко, и Л. М. Куперштейн, «Классификатор биомедицинских сигналов,» Искусственный интеллект, № 3, с. 88-95, 2010.
С. Осовский, Нейронные сети для обработки информации, пер. с польск. М., РФ: Финансы и статистика, 2004.
T. Martyniuk, B. Krukivskyi, L. Kupershtein, and V. Lukichov, “Neural Network model of heteroassociative memory for the classification task,” Radioelectronic and Computer Systems, № 2 (102), pp. 108-117, 2022. https://doi.org/10.32620/reks.2022.2.09
Э. М. Куссуль, Л. М. Косаткина, и В. В. Лукович, «Нейросетевые классификаторы для распознавания рукописных символов,» Управляющие системы и машины, № 4, с. 77-86, 1999.
В. И. Юнкеров, и С. Е. Григорьев, Математико-статистическая обработка данных медицинских исследований. СПб.: ВМедА, 2002.
В. В. Москаленко, М. О. Зарецький, Я. Ю. Ковальський, і С. С. Мартиненко, «Модель і метод навчання класифікатора контекстів спостереження на зображеннях відеоінспекції стічних труб,» Радіоелектронні і комп’ютерні системи, № 3, с. 59-66, 2020. https://doi.org/10.32620/reks.2020.3.06 .
Г. М. Гнатієнко, і В. Є. Снитюк, Експертні технології прийняття рішень, моногр. Київ, Україна: ТОВ «Маклаут», 2008.
В. П. Карп, «Интеллектуальный анализ данных в проблеме построения решающих правил классификации (на примере медицинской диагностики),» Новости искусственного интеллекта, № 2, с. 57-75, 2006.
Р. Сэджвик, Фундаментальные алгоритмы на С++. Анализ структуры данных. Сортировка. Поиск, пер. с англ. СПб. РФ: ООО «ДиаСофтЮП», 2002.
К. Кохонен, Ассоциативные запоминающие устройства, пер. с англ. М., РФ: Мир, 1982.
Г. Лорин, Сортировка и системы сортировки, пер. с англ. М.: Мир, 1983.
Т. Б. Мартинюк, і Б. І. Круківський, «Модель паралельного сортувальника для асоціативного процесора,» Вісник Вінницького політехнічного інституту, № 5, с. 49-55, 2020. https://doi.org/10.31649/1997-9266-2020-152-5-49-55 .
Т. Б. Мартинюк, і Б. І. Круківський, «Асоціативний процесор,» Патент України G06F 7/06. № 139604 МПК, 2006, 10.01.2020.
У. Прэтт, Цифровая обработка изображений, пер. с англ. М.: Мир, 1982.
Т. Б. Мартинюк, і Я. В. Запетрук, «Нейромережевий підхід до медичної експрес-діагностики,» Вісник Вінницького політехнічного інституту, № 6, с. 37-44, 2019. https://doi.org/10.31649/1997-9266-2019-147-6-37-44 .
Т. Б. Мартинюк, М. Г. Тарновський, і Я. В. Запетрук, «Структурні особливості нейромережевого класифікатора,» Вісник Вінницького політехнічного інституту, № 1, с. 46-52, 2020. https://doi.org/10.31649/1997-9266-2020-148-1-46-52 .
Т. Б. Мартинюк, Б. І. Круківський, і О. А. М’якішев, «Класифікатор,» Патент України G06G 7/00. № 150621 МПК (2022), 10.02.2022.
Т. Б. Мартинюк, і Б. І. Круківський, «Особливості паралельного алгоритму сортування з формуванням рангів,» Кібернетика та системний аналіз, № 1 (58), с. 31-36, 2022.
Т. Мартынюк, Л. Куперштейн, и А. Кожемяко, Аспекты разностно-срезовой обработки данных в нейроструктурах, моногр. LAMBERT Academic Publishing RU, 2018.
##submission.downloads##
-
PDF
Завантажень: 80
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, згодні з такими умовами:
- Автори зберігають авторське право і надають журналу право першої публікації.
- Автори можуть укладати окремі, додаткові договірні угоди з неексклюзивного поширення опублікованої журналом версії статті (наприклад, розмістити її в інститутському репозиторії або опублікувати її в книзі), з визнанням її первісної публікації в цьому журналі.
- Авторам дозволяється і рекомендується розміщувати їхню роботу в Інтернеті (наприклад, в інституційних сховищах або на їхньому сайті) до і під час процесу подачі, оскільки це сприяє продуктивним обмінам, а також швидшому і ширшому цитуванню опублікованих робіт (див. вплив відкритого доступу).